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Universitätsstrasse 150, D-44780, Bochum, Germany

Email: lunze@esr.ruhr-uni-bochum.de

Abstract—Discretely controlled switched positive sys-
tems are characterized by interacting continuous and dis-
crete dynamics. The continuous dynamics of the system
ı́s positive. Vector field analysis is used to show that the
trajectories of discretely controlled switched positive sys-
tems can be restricted to an invariant set away from the
equilibrium points of the constituent systems making up
the switched system. These invariant sets are called � -
invariant sets. Based on the properties of the � -invariant
sets, a design method to restrict the steady-state values of
the continuous states to desired sets is given.

1. Introduction

This paper considers a new class of systems called dis-
cretely controlled switched positive systems that are char-
acterized by interacting continuous and discrete subsys-
tems. The change of the discrete state (switching) is ef-
fected by the controller. Switching must take place to move
the continuous state from the initial state to a goal state.
Furthermore, switching must continue even after the goal
state has been reached in order to hold the state in the given
goal region of the state space.

This class of systems is characterized by positive contin-
uous dynamics. Examples of this type of systems include
DC-DC converters [5] where switching must take place in-
definitely in order to maintain the output voltage within a
given range or processes where heated parts are used to
transfer heat energy to other parts or fluids in order to main-
tain them within a given temperature range [4].

The difficulties of dealing with such system arise from
the fact that these systems work in regions of the state space
away from their equilibrium points. Due to this property,
this class of systems is not stable in the Lyapunov sense.
As a result, the large amount of literature dedicated to Lya-
punov stability-based analysis of switched systems like [2]
and [6] cannot be applied to these systems.

In this paper, phase plane analysis of the positive contin-
uous dynamics is used to show the boundedness of the state
of the discretely controlled switched positive system. Un-
der the assumptions made the trajectories of the switched
system cannot diverge to infinity regardless of the way the
switching thresholds are selected. Furthermore, the con-
tinuous trajectories of the system cannot escape from the

nonnegative part of the continuous state space. These con-
cepts can be extended to higher dimensional systems.

Analysis of the steady-state behaviour of the trajecto-
ries shows that the trajectories of the discretely controlled
switched positive systems can be restricted to invariant
sets away from the equilibrium points of the constituent
systems making up the switched system. These invariant
sets are called � -invariant sets. For planar systems, the
trajectories within a � -invariant set converge to a stable
and unique limit cycle regardless of the initial state. This
idea can be applied to design controllers which restrict the
steady-state values of the continuous states to desired sets
regardless of the initial state.

Due to space limitations, the propositions in this paper
are stated without proofs; the reader can refer to [4] for the
proofs.

2. The Model

2.1. Block diagram representation

Continuous controller

Continuous dynamics

Discrete controller
Event

generator

CONTROLLER

PLANT
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Figure 1: The model

Figure 1 shows the closed-loop system consisting of the
plant and the controller. The symbols used in the figure are
defined as follows:

&�')(+* ,
-.,0/2131314,057698;:=<?>A@ 5 is the continuous
state vector.
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&�� :�� >���� is the discrete state prescribed by the
discrete part of the controller.

&	��
.:� > @ is the continuous control signal vector.

&�� (���� -�����/��313131���� ��� , with ��
 :	������� � is a vector of
discrete events. The event ��
 is generated when the
continuous state ' crosses the threshold � 
�� ' � in the
continuous state space, i.e.��
 ("! � if � 
�� ' �$#%�� otherwise

1 (1)

&	&�
 : @ is a reference input for the continuous con-
troller.

There is a unique continuous map '( ) 
+* �-, � associated with
each discrete state � , and the continuous dynamics which
are active at any given time are determined by the dis-
crete controller. There is a separate continuous controller
for each discrete state, i.e. the continuous controller is
switched together with the continuous plant.

2.2. Modelling assumptions

In this paper, the following modelling assumptions are
made:

& The continuous state ' does not change at the switch-
ing instants, i.e. there are no state jumps.

& Each of the continuous systems '( ) 
+* �+, � , � (�.�313131��0/ is a positive linear system of the form1' (324 ) 
+* '65728 ) 
+* ��
�1 (2)

& The continuous controllers preserve the positivity of
the associated continuous dynamics.

& Each of the continuous systems is observable.

& None of the continuous systems '( ) 
+* �+, � , � (�.�313131��0/ is completely state controllable by virtue
of some inputs not being directly or indirectly con-
nected to the states. This assumption is made to ex-
clude the trivial solution where the switched system
can be transferred from the initial state to the goal state
without switching. It is assumed that the poles corre-
sponding to the uncontrollable states lie strictly on the
left-half plane.

& The switching surfaces � 
�� ' � are linear functions of
the form 9 8 
 ';:=<>
 (?���@� (A�.�313131B�0/ .

2.3. Specific continuous models considered

It is assumed that each of the positive continuous-time
systems making up the switched system has only one con-
trollable state, but the combination of all the controllable

states for all the continuous systems covers all the C com-
ponents of the continuous state space. In a 2-dimensional
setting, the continuous systems are given byD 1,
-1,0/FE ( G 'H ) -+*- - 'H ) -+*-%/� 'H ) -+*/ /"I D ,
-

,0/�E 5 D 'J ) -+*- � E � -
( 24 ) -+* '65 28 ) -+* � -�� (3)D 1,
-1,0/FE ( G 'H ) /�*- - �'H ) /�*/ - 'H ) /�*/ /"I D ,
-

,0/�E 5 D �'J ) /�*/ E ��/
( 24 ) /�* '65 28 ) /�* ��/ 1 (4)

3. Analysis of the vector fields

Affine state feedback is used to stabilize the continuous
systems while maintaining the positivity of the continuous
dynamics, [4]. After the design of the continuous con-
troller, the continuous dynamics of the asymptotically sta-
ble closed-loop systems corresponding to systems (3) and
(4) are given byD 1,
-1,0/�E (�G H ) -+*- - H ) -+*-%/� H ) -+*/ /"I D ,
-

,0/�E 5 D J ) -+*- � E ( 4 ) -+* '�5 8 ) -+* �
(5)

andD 1,
-1,0/�E (�G H ) /�*- - �H ) /�*/ - H ) /�*/ /"I D ,
-
,0/�E 5 D �J ) /�*/ E ( 4 ) /�* '�5 8 ) /�* 1

(6)
The continuous controllers are designed in such a way that:KH ) 
+*L LNM 5O PRQ>ST�UV L H ) 
+*L T for W (A�.�313131B� C �@� (A�.�313131B� C 1 (7)

Switching between systems (5) and (6) means superim-
posing the vector fields of the respective systems. If the
continuous systems satisfy condition (7), the vector fields
of the switched system are as shown in Fig. 2, [4]. Line X -
is defined by the equation H ) -+*- - 5�H ) -+*-%/ 5 J ) -+*- (�� while lineX / is given by H ) /�*/ - 5�H ) /�*/ / 5 J ) /�*/ (?� . The point *ZY,
-��@��698 is
the equilibrium point of system (5) while point * ���KY,
/ 698
is the equilibrium point of system (6). The arrows show
the directions of the vector fields. The figure shows that
the continuous state space @ 5 []\ can be partitioned into 4
different regions depending on the direction of the vector
fields.

Proposition 3.1 The non-negative part of the state-space
(the set @ 5 []\ ) is an invariant set for the discretely controlled
switched positive systems.

Proposition 3.2 The state of the discretely controlled
switched positive system made up of the second-order
asymptotically stable positive systems (5) and (6) is
bounded, i.e.^ '_�`�a� ^cb?d e ^ '_�Zf-� ^cb?dhg fji%� (8)
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Figure 2: Vector fields of systems (5) and (6) superimposed

This concept of the boundedness of the state can be ex-
tended to higher dimensional systems provided the contin-
uous controllers are designed such that each system satis-
fies condition (7), [4].

4. � -invariant sets

It is well known for a linear system

�' ( 4 ' �?'_�`�a� (�' \ � (9)

that a set '<+> @ 5 is said to be
4

-invariant if
4 ' : '< for

all ' : '< . Every trajectory of system (9) starting from the4
-invariant set '< remains in that set for all future time, [1].

Analogously, a � -invariant set ( � for hybrid) is defined for
discretely controlled switched positive systems:

Definition 4.1 A set
� >�@ 5 []\ is called � -invariant if all

the trajectories of the discretely controlled switched posi-
tive system starting from

�
remain in that set for all future

time.

In the previous section, it was stated that the trajectories of
the discretely controlled switched positive system cannot
escape from the set @ 5 []\ , which is the entire continuous
state space for this type of system.

Corollary 4.1 The set @ 5 []\ is the largest � -invariant set
for the discretely controlled switched positive system.

To illustrate the properties of the � -invariant set, consider
Fig. 3. The switching thresholds � - and � / are straight
lines originating along the , - axis in region @ - and ex-
tending into region @�� . The switching surfaces do not in-
tersect and do not enclose the equilibrium points *ZY,#-��@��698
or * ���KY,0/ 698 between them. The setting in the figure as-
sumes that the switched system has an initial state along
the switching threshold � / with system (5) active. When
the system trajectory crosses the switching threshold � - ,
system (6) becomes active, and when the trajectory crosses
threshold � / , system (5) becomes active, and so on.
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Figure 3: � -invariant set
� -

The trajectory of the switched system starting at point'�
��� along the ,
- -axis in Fig. 3 evolves as shown in the
figure, and after one cycle, the trajectory of the switched
system ends up at a point '�
��� which is higher than '�
��� .
On the other hand, a trajectory of the switched system start-
ing at point '�
 ��� in region @�� evolves as shown in Fig. 3,
and after one cycle ends up at point '�
 ��� which is lower
than '�
 ��� (this can be deduced from the directions of the
vector fields shown in Fig. 2). It follows that trajectories of
the switched system starting anywhere between the switch-
ing surfaces � - and � / (labelled as set

� - in Fig. 3) cannot
escape from that set, hence

� - is a � -invariant set.
If the switching thresholds � - and � / are chosen as ex-

plained above, it can be shown that there exists a special
� -invariant set � as shown in Fig. 4. The lower boundary
of the set is the trajectory of system (5) from '�
� to '�


S
,

the upper boundary is the trajectory of system (5) from '�
���
to '�
 �

S
, while the switching thresholds � - and � / form the

side boundaries of the set.
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Figure 4: � -invariant set �

The set � has the special property that with repeated
switching, all trajectories starting below the lower bound-
ary eventually enter the set from below and remain within
the set for all future time. Similarly, all trajectories starting
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above the upper boundary eventually enter the set � from
above and remain in the set for all future time. Trajectories
starting within � remain within the set for all future time.
Hence � is a � -invariant set. Since the trajectories cannot
escape from set � , the steady-state value of state ,
/ is lim-
ited to an upper bound of ,�/���� and a lower bound of ,�/����
as shown by the dotted lines in Fig. 4.

Proposition 4.1 : For a given set of switching surfaces � -
and � / , the � -invariant set � shown in Fig. 4 contains one
unique and stable limit cycle.

The stability of the limit cycle can also be analyzed by
use of a Poincaré map. The trajectory sensitivity matrix
after exactly one period � of the limit cycle is known as
the monodromy matrix, [3, 7], and the eigenvalues of this
matrix determine the stability of the limit cycle. The mon-
odromy matrix always has one eigenvalue of 1. If the other
eigenvalues (known as characteristic multipliers or Floquet
multipliers) are less than 1, the limit cycle is stable [7].

5. ExampleD 1,
-1,0/�E ( D : � � 1 �� :��	E D ,
-,0/FE 5 D � �.�� E ( 4 ) -+* '@5 8 ) -+* �D 1,
-1,0/�E ( D :�� �� 1 � :���E D ,
-,0/FE 5 D �
�����	E ( 4 ) /�* '@5 8 ) /�* 1

The objective is to maintain the steady-state value of
state ,0/ between ��� # ,0/ #
	.� . The switching
surfaces therefore chosen as ��� - � ' � (7: ,0/ 5 ��� (?� and��/ � ' � ( ,0/ :�	.� (�� . For this set of switching sur-
faces, the vertices of the limit cycle are computed as' \ ( * ��� 1 � � � ��� ��� 698 and ' - ( * ����1 �������>��	.��698 . The mon-
odromy matrix is found to be

�$� ' � � � ( D � 1 ��	������ :K� 1 ���.��� �� 1 �.������� ��1 �.��	�����6 E
with eigenvalues of 1 and 0.87489 hence the limit cycle is
stable.

A new set of switching surfaces � -�� ' � and� /a� ' � is selected as � -�� ' � (�,
- :���� 1 � � � � (?� and� /a� ' � (7: ,
-_5�����1 ������� (?� . These switching surfaces
pass through the vertices '

\
and ' - of the limit cycle

computed above. The vertices of the limit cycle are found
to be '

\ ( * ��� 1 � � � ��� ��� 698 and ' - ()* ����1 �������>��	.��698 ,
which are the same as before. For this set of switching
surfaces, the monodromy matrix is

�$� ' � � � ( D � 1 ��������� :K� 1 �.�������:K� 1 ����	���� � 1 �.������	 E
with eigenvalues of 1 and 0.7989 hence this limit cycle is
also stable.

The trajectory of state ,�/ plotted against time is shown
in Fig. 5, and it can be seen that the steady-state value of

state ,0/ is restricted to the desired range of ��� # ,�/ #�	.� .
Furthermore, the switched system must switch indefinitely
to maintain the value of state ,�/ within this range.

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80
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Figure 5: State ,0/ against time

6. Conclusion

It was shown that the trajectories of the discretely con-
trolled switched positive system can be restricted to invari-
ant sets called � -invariant sets. For a planar system, the
trajectories within an � -invariant set converge to a stable
and unique limit cycle as long as the initial state is chosen
between the switching surfaces.
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