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Abstract— In this paper, a symbolic method is proposed
for analyzing the bifurcation in switching power convert-
ers. This method focuses on the cyclic operation of the
system which characterizes its bifurcation behavior. The
concept ofblock sequenceis introduced, which, in con-
junction with the periodicity of the system, can be used to
distinguish the various types of bifurcation behavior, e.g.,
“smooth” period doubling and “nonsmooth” border colli-
sion. The proposed method is applied, as an illustrative ex-
ample, to develop 2-dimensional bifurcation diagrams for
a voltage-mode controlled buck converter.

1. Introduction

In much of the previous study of nonlinear phenomena in
switching power converters, a variety of complex behavior
such as bifurcation and chaos has been identified [1, 2, 3].
Typically, switching power converters undergo topological
changes cyclically in time. Although each involving cir-
cuit topology is linear, the overall dynamics of a switching
power converter can be rather complex.

Traditional methods of analyzing bifurcation involve a
typical stability evaluation, as most “standard” bifurcations
are characterized by a change of stability status [4]. Meth-
ods pertaining to stability tests (e.g., inspecting eigenval-
ues of Jacobians) are therefore effective only for study-
ing bifurcations that involve a loss of stability status. For
border collision, which is also typical of switching con-
verters, such methods of analysis are either irrelevant or
inapplicable. In fact, border collision occurs as a conse-
quence of a “structural change” as one or more parame-
ters are changed. In the case of switching converters, this
translates to a “change of topological sequence” as one or
more parameters are varied [2]. In this paper, we propose
a symbolic analytical approach, whereby the dynamics of
the topological sequence is examined. We introduce a new
concept ofblock sequencewhich can be used to distinguish
border collision from other standard bifurcations.

2. Review of Bifurcation in Switching Power Convert-
ers

Generally speaking, there are two different types of bi-
furcation exhibited by switching power converters:

• Standard bifurcation,which is characterized by a
change of stability status, e.g., period-doubling,

saddle-node and Hopf bifurcations.

• Border collision,which is characterized by a change
of operation as a result of a change of topological se-
quence.

Standard bifurcations are also known as “smooth” bifurca-
tions because they arise from smooth dynamical systems
which do not experience any structural change at the bi-
furcation point. Border collisions, moreover, are regarded
as “nonsmooth” bifurcations because the functions used to
describe their dynamics are nonsmooth at the bifurcation
point. In switching converters, we may attribute any border
collision to a change of topological sequence.

Unlike standard bifurcations, border collision does not
have a universal manifestation.1 It can be a transition from
period-1 operation to period-n operation, or from period-
n operation to chaos, etc. [5]. The differences between
these two types of bifurcations can also be viewed from
their bifurcation diagrams. Border collision usually mani-
fests itself as some abrupt transitions, e.g., abrupt bendings,
discontinuities, and jumps.

In the following, we will introduce a symbolic analysis
method which makes use of the fundamental cause of bor-
der collision in terms of topological changes to distinguish
various types of bifurcations in switching power convert-
ers.

3. Symbolic Method for Bifurcation Analysis

In switching power converters, the switch and the diode
act as switching elements. If the number of switching ele-
ments isN , there will be2N possible switching states. In
practice, however, not all switching states are used. The
switching states that are relevant to a particular operation
depend on the control scheme applied and the conduction
mode of the system. If we inspect the system in a particu-
lar periodT , whereT is the period of the driving clock, we
see that the circuit takes a sequence of circuit topologies. It
is clear that the topological sequence in a switching period
governs the dynamics of the system.

For clarity of discussion, the following definitions apply
to all switching converters.

1Standard bifurcations usually have characteristic universal manifes-
tations. For example, period doubling manifests as a doubling of the rep-
etition period, and Hopf bifurcation manifests as sudden death of a fixed
point and birth of a limit cycle or quasi-periodic orbit.

2004 International Symposium on Nonlinear
Theory and its Applications (NOLTA2004)

Fukuoka, Japan, Nov. 29 - Dec. 3, 2004

67



Definition 1 A switching block is a sequence of switch
states which is taken within one particular switching pe-
riod.

Definition 2 A block sequenceis a symbolic sequence of
switching blocks that describes the way in which the block
of switch states changes as time advances.

When studying the nonlinear phenomena of switching
converters, discrete-time iterative maps are often used to
describe the dynamics of the system [6, 7]. If the sampling
is uniform to the driving clock, the iterative map is called
a stroboscopic map, which is widely used in much of the
previous work. The block sequence defined above can be
viewed as being derived from a generalized stroboscopic
map. It deals with the switching states of the system, but
not the values of the state variables.

By this definition, a periodic or aperiodic solution can be
transformed into an infinite sequence of switching blocks.
Obviously, for any periodic solution, its block sequence
must be periodic. Moreover, for an aperiodic solution, its
block sequence may be aperiodic or periodic. Hence, ape-
riodic block sequence does not imply a periodic solution,
but an aperiodic block sequence will imply an aperiodic
solution.

For instance, ifb is a specific switching block, thenbbb...
is a periodic block sequence, but it does not necessarily im-
ply a periodic solution of the system.2 To simplify the de-
scription of various block sequences, we use the following
notations.

Definition 3 Let b1, b2, ..., bm be switching blocks. We
denote by(b1b2 · · · bm)n a finite block sequence which re-
peats the block sequence(b1b2 · · · bm) n times. Moreover,
a periodic block sequence is denoted as(b1 b2 · · · bm)∞,
and an aperiodic block sequence as(∞).

3.1. Detecting and Distinguishing Border Collision and
Standard Bifurcations

As mentioned in the previous section, border collision is
caused by a structural change of the system which is equiv-
alent to a change in the topological sequence. Hence, the
block sequence of the system must experience a qualitative
change when the system undergoes a border collision. This
basic fact is summarized by the following theorem which
is useful for detecting border collision.

Theorem 1 Consider a switching power converter with
parameterα ∈ R. Suppose the block sequence forα < αc

is B1 and the block sequence forα > αc is B2.3 Then,
border collision occurs atα = αc if B1 6= B2.

2As we will see, this definition is useful in distinguishing border colli-
sion from standard bifurcations.

3The conditionα < αc is a local condition and should be more rig-
orously written asα = αc − ǫ for all 0 < ǫ < ǫ0 for some positiveǫ0.
The conditionα > αc can be likewise understood. However, we write
α < αc andα > αc in the theorem statement for better readability.

The above theorem follows directly from the mechanism
of border collision. Specifically, border collision is charac-
terized by the sudden loss of an operation and a simulta-
neous acquisition of a new operation. This is equivalent to
a change in the system structure which alters the describ-
ing function of the system, hence border collision occurs.
In switching converters, any operational change pertaining
to a change of structure must be due to a change in the
topological sequence. Hence, a change of block sequence
implies border collision.

By inspecting the block sequence, the occurrence of
border collision can be easily detected. In particular, we
have the following observations in applying block sequence
analysis.

1. Since the block sequence only provides partial infor-
mation about the dynamics of the system, the exact
manifestation of a border collision is not available.

2. Standard bifurcation (e.g., period doubling and Hopf)
cannot be identified because the block sequence does
not change when a standard bifurcation occurs.

To cover standard bifurcations in our analysis, extra in-
formation is required. We note that for periodically driven
(nonautonomous) systems, the periodicity is a natural at-
tribute of the system dynamics. Information about the peri-
odicity can be easily obtained by sampling the waveforms.

We denote byPw the periodicity of the system (precisely
the periodicity of the waveforms). For instance,Pw = n

for a period-n operation.

Theorem 2 Consider a switching converter with parame-
ter α ∈ R. SupposePw1 andB1 are, respectively, the pe-
riodicity and block sequence of the converter forα < αc,
andPw2 andB2 are, respectively, the periodicity and block
sequence of the converter forα > αc. Then, a standard bi-
furcation occurs atα = αc if Pw1 6= Pw2 andB1 = B2.

This theorem can be reasoned as follows. First, from Theo-
rem 1, if the block sequence remains unchanged, no border
collision occurs. Moreover, the change ofPw implies a
bifurcation, and this bifurcation must be a standard bifur-
cation.

Remarks on Periodicity— The term periodicity may have
two different interpretations. The first one iswaveform pe-
riodicity Pw, which was discussed earlier. The other inter-
pretation is theblock sequence periodicity,denoted byPs.
For a periodic solution withPw = n, the block sequence
periodicityPs is a common divisor ofn. Thus,Ps ≤ n.

We note that waveform periodicity implies block se-
quence periodicity, but not vice versa. Thus, even if the
block sequence is periodic, the waveforms (system) can be
aperiodic.

3.2. Analysis Procedure

Based on Theorems 1 and 2, a procedure for symbolic
analysis can be derived. Basically, we observe the block se-
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Figure 1: Voltage-mode controlled buck converter. (a) Cir-
cuit; (b) typical waveforms illustrating the operation.

quence and waveform periodicity, and detect their variation
as a selected parameterα is varied.

Supposeα1 < αc < α2, whereαc is the critical value.
Denote the block sequence and the waveform periodicity,
respectively, byBi andPwi for α = αi with i = 1 or 2.
Then, we apply the above theorems to determine the type
of bifurcation.

• If B1 = B2 (the block sequence is unchanged) and
Pw1 6= Pw2, a standard bifurcation occurs atα = αc.
For example, period doubling occurs if2Pw1 = Pw2.
An expansion in the periodicity (i.e.,Pw1 ≪ Pw2)
may indicate a Hopf bifurcation.

• If B1 6= B2 (the block sequence changes), border
collision occurs atα = αc. The information about
Pw1 andPw2 determines the manifestation of the bor-
der collision. For example, ifPw1 is finite and equal
to Pw2, border collision takes place to bring a peri-
odic orbit to another periodic orbit of the same pe-
riod. Also, if Pw1 6= Pw2, andPw1 andPw2 are finite,
border collision transmutates a periodic orbit to an-
other periodic orbit of a different period. Moreover,
if Pw1 6= Pw2 with Pw1 being finite andPw2 infinite,
border collision occurs to transmutate a periodic orbit
to a chaotic one.
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Figure 2: Illustrative waveforms for different types of
blocks. (a) Block1 (i = 0); (b) block2 (i = 0); (c) block
3 (i = 1); (d) block4 (i = 1); (e) block5 (i = 2); (f) block
6 (i = 2).

4. Application Example

In this section, the symbolic analysis procedure is ap-
plied to the voltage-mode controlled buck converter shown
in Fig. 1 (a). The operation of buck converter under study
can be briefly described as follows [2, 3, 8]. The output
voltage error with respect to the reference voltage is ampli-
fied to give a control voltagevcon as

vcon(t) = a(vC(t) − Vref), (1)

wherea is the feedback amplifier gain andVref is the ref-
erence voltage. Then, switchS is controlled by comparing
the control voltagevcon with a ramp signalVramp. The
ramp signal is given by

Vramp(t) = VL + (VU − VL)

(

t

T
mod 1

)

, (2)

where VL and VU are the lower and upper voltages of
the ramp, respectively. The comparator output,u, gives
the pulse-width-modulated signal necessary for driving the
switch. Typically, switchS is turned on whenvcon(t) ≤
Vramp, and turned off whenvcon(t) > Vramp, as illustrated
in Fig. 1 (b). For simplicity, we consider continuous con-
duction mode (CCM), in which the inductor current never
drops to zero. To guarantee operation in CCM, the param-
eters are chosen as follows:

L = 20 mH, C = 47 µF, T = 400 µs,a = 8.4,
Vref = 11.3 V, VL = 3.8 V andVU = 8.2 V

Furthermore, the load resistorR and the input voltageE
are varied simultaneously and taken as bifurcation parame-
ters.
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Figure 3: Bifurcation diagram for the voltage-mode con-
trolled buck converter in the parameter plane{(R, E) : 2 ≤
R ≤ 25; 20 ≤ E ≤ 50} showing regions of operation with
various switching block sequences. Legends:= (3)∞;

= (35)∞; = (13333333)∞; = (1333)∞; =
(13331335)∞; = the rest including chaotic and peri-
odic regions. Boundary curves separating regions of differ-
ent colors locate the occurrence of border collision. Within
some specific region, some bifurcation boundary curves
corresponding to PD1, PD2a, PD2b, PD4a and PD4b are
also plotted. These curves locate the standard period dou-
bling occurs.

According to the circuit operation, no switching or any
number of switchings in a switching period are allowed. If
there arei switching actions in a switching periodT , the
corresponding switching block will be a sequence ofi + 1
switch states. Thus, the block can be conveniently defined
as

block=

{

2i + 1 if the first switch state is OFF.
2i + 2 if the first switch state is ON.

(3)
Fig. 2 shows the waveforms corresponding to some possi-
ble switching blocks.

Using our symbolic method, bifurcation diagrams can
be obtained, as exemplified in Fig. 3. For simplicity, only
some typical regions are shown in different colors in the di-
agram. From Theorem 1, it can be easily deduced that bor-
der collision occurs on the border which separates different
regions. In addition, some typical bifurcation boundaries,
across which the doubling of periodicityPw occurs from
left to right, are also given. These curves are denoted as
PDni, wheren is the shorterPw associated with the pe-
riod doubling, andi is an index to distinguish bifurcations
with the samen. Since every curve is located inside a spe-
cific region (for instance, PD1, PD2a and PD4a in the grey
region, PD2a in the magenta region, PD4a in the green re-
gion), standard period doubling, from Theorem 2, will oc-
cur when the parameters move across the curve. Moreover,

the exact type of border collision can also be obtained if the
information about the periodicityPw on both sides of the
curve is available. For example,Pw = 4 in both sides of
the upper boundary curve between the grey region and the
green region. Thus, border collision takes place with block
sequence(3)∞ being transmuted to(1333)∞ with the pe-
riod unchanged. Moreover, for the lower boundary curve
between the grey region and the green region,Pw = 2
in the left side andPw = 4 in the right side. Hence,
border collision occurs with block sequence(3)∞ being
transmuted to(1333)∞, together with a period-doubling
manifestation.4

5. Conclusion

We have introduced in this paper a method for analyz-
ing the bifurcation behavior of switching power converters.
Unlike the conventional methods, our method focuses on
the operational change when the system undergoes a spe-
cific bifurcation. The concept of block sequence is used to
describe the operational condition of the system. Combin-
ing with the periodicity information, both standard bifurca-
tion and border collision can be identified.
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