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Abstract—This paper studies the bifurcation phenom-
ena of the chaotic attractor in a simple continuous system
corresponding to the piecewise smooth system. We show
the circuit model and derive a return map. Using a return
map, the chaotic attractor can be analyzed in a parameter
plane rigorously. Some theoretical results are verified by
the laboratory experiments.

1. Introduction

The piecewise smooth system shows several interesting
phenomena, both numerically and experimentally. In par-
ticular, intensive study on switched dynamical system has
been devoted to the analysis of the dynamics in the contin-
uous systems corresponding to the piecewise smooth sys-
tem. In the simplest piecewise smooth system, the map
has a differential function form for two region, but it is
continuous across the border and its derivative is discon-
tinuous. This system exhibits many interesting bifurcation
phenomena and various interesting results have been pub-
lished: analysis of 1 and 2-dimensional piecewise smooth
maps[1][2], another approach for this problem calledC-
bifurcations[3][4], theoretical and experimental study of
power electronic systems[5], and so on[7]. On the other
hand, the power electronic system is the typical class of the
piecewise smooth system. Over the past years, a great deal
of studies have been devoted to one and two dimensional
continuous system corresponding to the piecewise smooth
system which consists of two regions[8][9]. Since current
or voltage controlled converters have wide industrial appli-
cations, the analysis of the bifurcation phenomena for the
piecewise smooth system is a basic problem in practical
viewpoint. However, why doesm-piece chaotic attractor
change other type chaotic attractor in the continuous sys-
tem corresponding to the piecewise smooth system?

The purpose of this paper is to study the bifurcation phe-
nomena of the chaotic attractor in a simple continuous sys-
tem corresponding to the piecewise smooth system. We
show the circuit model and derive a return map. Using a
return map, the chaotic attractor can be analyzed in a pa-
rameter plane rigorously.

2. Simple Piecewise Smooth System

First, we briefly explain the behavior of the circuit and its
dynamics. Figure 1(a) shows a simple circuit controlled by
a switch. By rescalingτ = 1/(RCt), the system dynamics
is described by

dv
dτ
=

{ −v + E, (SW: A),
−v, (SW: B).

(1)

where we relabel the clock pulseT ′ = 1/(RC)T asT . In
our system, we assume that the supplied DC voltage source
is interchanged by changing positions of the switch and
only state variable is the capacitance voltagev. When the
v reaches the reference valuevr, the switch is turned to-
ward B. Any clock pulses during this time is ignored. The
switch keeps B until arrival of the nextclock pulse(See Fig.
1(b)). We assume that the initial valuevk at a timekT and
the switch is turned toward A. As a result, when the initial
value isv = vk at the timekT , vk+1 at the time (k+ 1)T is
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Figure 1: Circuit model and its behavior.
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Figure 2: Numerical and experimental results ofm-piece chaotic attractor(T=0.485).

given by:

F(vk) = vk+1 =


(vk − E)e−T + E, vk ≤ D,

vr
vk − E
vr − E

e−T , vk > D,
(2)

whereD = (vr − E)eT + E. Consequently, Eq. (1) can be
interpreted as behavior of a discrete map. The derivative of
the return mapF(vk) is given by

DF(vk) =


e−T = a, vk ≤ D,
vre−T

vr − E
= b, vk > D.

(3)

Let I ≡ [F2(D), F(D)]. If F2(D) < F3(D), F(I) ⊆ I. This
means if (a+ 1)(1− b) < 1 is filled, we refer toI as an
invariant interval ofF. By varying the parameters, we can
find many sub-harmonic bifurcation sets including border
collision bifurcation.

3. Bifurcation Analysis

This system has a chaotic attractor with 1-,m-, or 2m-
pieces. Figure 2 shows numerical and experimental results
of the chaotic attractor. When the bifurcation phenomena
from the chaotic attractor to another chaotic attractor oc-
curs, these phenomena can be divided into three classes.
Figure 3 shows the bifurcation structure of the chaotic at-
tractor.

case A After 1-piece chaotic attractor there is a possibil-
ity(depending on the parameters) that,m-periodic or-
bit, m-piece chaotic attractor, or 2m-piece chaotic at-
tractor can appear, or vice versa.

case B From 2m-piece chaotic attractor tom-piece chaotic
attractor, or vice versa.

case C From m-piece chaotic attractor to 1-piece chaotic
attractor, or vice versa.

Figure 4 shows two-parameter bifurcation diagram inside
the non-periodic orbit. In a bifurcation diagram,m-periodic
points andm-piece chaotic attractor are indicated by sym-
bolsmP andmC, respectively. In the following, we analyze
the bifurcation mechanism of the chaotic attractor from a
strictly mathematical viewpoint. Note that Fig. 4 is calcu-
lated mathematically by using the exact solution.

3.1. case A

When the following relation is satisfied, we can observe
a border collision bifurcation of 1-piece chaotic attractor.

f m(D) = D. (4)

As a result, 1-piece chaotic attractor suddenly disappeared.
After that, there is a possibility(depending on the param-
eters) that,m-periodic orbit, 2m-piece chaotic attractor, or
m-piece chaotic attractor can appear, or vice versa(See case
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Figure 3: The bifurcation structure of the chaotic attractor.
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Figure 4: Two-parameter bifurcation diagram.

A in Fig. 3). In Fig. 4 withT = 0.485, when 1-piece
chaotic attractor corresponding Fig. 2 (a) crosses the con-
dition (4), 1-piece attractor suddenly changes a strange at-
tractor corresponding Fig. 2 (b). After the long transient
response, the orbit settle into 6-piece chaotic orbit which
looks like 6-periodic points. We can also observe the oth-
ers bifurcations (See. a thick solid line in Fig. 4).

3.2. case B

In Fig. 2 (b) and (c), we can observe a crisis from
2m-piece chaotic attractor tom-piece chaotic attractor with
m=3, or vice versa(See case B in Fig. 3). Figure 5(a) cor-
responding to Fig. 2(b) shows the return maps ofv k-vk+6.
Now, we focus on a part of the return map. When the fol-
lowing relationship is satisfied, 2m-piece invariant intervals
disappear via crisis.

f 4m(D1) = F6m(D1), (5)

where

D1 =
(vr − E)2

vr
e(2m−1)T + E

vr − E
vr

emT + E. (6)

The periphery region of the borderD 1 is described by

vk+2m = F2m(vk) =



(vk − E)
(

vr
vr−E

)3
e−2mT

−E
(

vr
vr−E

)2
e−mT − vrE

vr−E e−T , vk ≤ D1,

(vk − E)
(

vr
vr−E

)2
e−2mT

− vrE
vr−E e−mT , vk > D1.

In Fig. 4 with T = 0.485, when the reference valuev r
increases from this parameter, we can observer the bifur-
cation phenomena from 6-piece chaotic attractor to 3-piece
chaotic attractor. Figure 5(b) shows the return maps of 3-
piece chaotic attractor. Thin dashed line in Figure 4 indi-
cates the condition (5).
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Figure 5: Return map ofvk-F2m(vk) (T=0.485,m=3).
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3.3. case C

In Fig. 2 (c) and (d), we can observe a crisis from
m-piece chaotic attractor to 1-piece chaotic attractor with
m=3, or vice versa. Figure 6(a) corresponding to Fig. 2(c)
shows the return maps ofvk-vk+3. We focus on a part of the
return map. When the following relationship is satisfied,
m-piece invariant intervals disappear via crisis.

F2m(D2) = F3m(D2), (7)

where
D2 = (vr − E)e(m−1)T + E. (8)

The periphery region of the borderD 2 is given by

vk+m = Fm(vk) =


vke−mT , vk ≤ D2,

(vk − E)
(

vr
vr−E

)2
e−mT − vrE

vr−E e−T , vk > D2.

When the reference valuevr increases from Fig. 2 (c), 3-
piece chaotic attractor satisfiesF6(D2) = F9(D2). As a
result, 3-piece invariant intervals disappear via crisis. After
that 1-piece chaotic attractor generates(See 6(b)). Thick
dashed line in Fig. 4 indicates the condition (7).
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Figure 6: Return map ofvk-F6(vk) (T=0.52).

4. Conclusions

We have studied the dynamics of simple continuous sys-
tem corresponding to the piecewise smooth system. By
varying the amplitude of an input voltage and the period of
the clock pulse, we found many bifurcation sets in param-
eter plane. Using a return map, the bifurcation mechanism

of the chaotic attractor was analyzed. Some theoretical re-
sults were confirmed by laboratory measurements.
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