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Abstract—We consider a piecewise-constant systems
with sampled-data feedbacks and show a synthesis pro-
cedure for a system which generates chaos and periodic
solutions. The periodic solutions are stabilized ”Unstable
Periodic Orbits” embedded on chaos and the controlling
method is based on a delayed state feedback. An analy-
sis of the system can be performed by using the piecewise
linear return map. We also provide a simple implemented
circuit and typical phenomena are verified in the laboratory.

1. Introduction

Synthesis of chaotic oscillator with simple structure have
received grate attention due to the increasing number of ap-
plication of chaotic oscillator in engineering, as for exam-
ple in communication systems [1].

Several model of simple chaotic oscillator with switch-
ing elements have been reported in some literature because
of their simple structure allowing the implementation with-
out difficulty and the use of less complex tools for its anal-
ysis. Also, some chaotic systems with sampled-data feed-
back loop have been studied [2]-[4].

On the other hand, periodic solutions are one of the most
important phenomena in nonlinear dynamical system in-
cluding many engineering systems. While stability analy-
sis of periodic solutions is a basic problem, synthesizing a
nonlinear system which exhibits a stable periodic solution
is also essential. Several method for the inverse problem of
synthesizing such systems have been proposed [5][6].

In this paper, we propose a novel nonlinear system which
consists of a chaotic system and a dynamic controller. The
proposed system exhibits some stabilized Unstable Peri-
odic Orbits (abbr. UPO )which are embedded on chaos at-
tractor of the original chaotic system. Generally, the proce-
dure to stabilize UPOs is called Controlling Chaos [7][8].
Our proposal is a synthesis of a nonlinear system which
generates periodic solutions based on chaos.

The basic principle is using a feedback of delayed states,
but is not included on a category of Delayed Feedback Con-
trol (abbr. DFC) [8]-[11] well-known as an one of a con-
trolling chaos methods. However a proposed system has an
advantage such that no preliminary calculation of the UPOs
is required, similarly to the DFC.

First, we consider a Nonautonomous Piecewise-

Constant System as the basic chaotic system. The system
dynamics is governed by a 1-D return map. By using the
return map, we can accomplish the both of synthesis and
analysis of the system. Chaos generation can be guaran-
teed theoretically. Second, we construct a controlled sys-
tem based on the return map. We provide a condition to
stabilize UPOs and a domain of attraction. Some theoreti-
cal results are verified in the experimental circuit.
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Figure 1: Nonautonomous piecewise-constant systems

2. A nonautonomous PWC with sampled-data feed-
backs

A nonautonomous piecewise-constant system (abbr.
NMPL) is shown in Fig. 1, where the block of S/H samples
x when the normalized time τ is equal to n (n = 1, 2, 3, · · ·)
and stores the sampled value until τ = n+ 1. Let the output
of S/H be xn:

xn = x(n), for n ≤ τ < n + 1. (1)

Then the system dynamics is described as the following:

ẋ = f (xn) + (A − 1)xn, for n ≤ τ < n + 1. (2)

Letting the nonlinear function f (·) be time-invariant, the
righthand side of the equation is piecewise-constant and
the trajectory of the solution is piecewise-linear. Figure 2
shows an example of the time-domain wave form, where a
solid and broken line shows x(τ) and xn, respectively.

2004 International Symposium on Nonlinear
Theory and its Applications (NOLTA2004)

Fukuoka, Japan, Nov. 29 - Dec. 3, 2004

47



Here, focusing the state x(τ) at τ = n, we can define the
return map F(xn) from x(n) to x(n+1). The return map can
be described explicitly as the following:

F : xn �→ xn+1, F(xn) = f (xn) + Axn. (3)

Changing the nonlinear function f (xn), we can construct
any 1 dimensional (abbr. 1-D) return map F(xn). In this
paper, we consider the case that the nonlinear characteristic
f (xn) is define as the following:
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Figure 2: A time-domain waveform
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Figure 3: a hysteresis characteristic

f (xn) =

{
(a − 1), for xn ≤ D0,
−(a − 1), for xn > D1.

(4)

where the parameters a, D0 and D1 are constant. The hys-
teresis characteristic is shown in Fig. 3. f (xn) switches
from a − 1 to −(a − 1) if xn reaches the right threshold D0,
f (xn) switches from −(a − 1) to a − 1 if xn reaches the left
threshold D1. In this case, the return map F(xn) is to be a
Hysteresis return map [14] as shown in Fig. 4;

F(xn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F0 = axn + (a − 1), if xn ≤ D1,
or D1 < xn ≤ D0, xn = F0(xn−1),
F1 = axn − (a − 1), otherwise.

(5)

In the case of 1 < a < 2
1+D0

and D0 = D1, the discrete time
system (5) exhibits chaos. In the experimental circuit, the
integrator in the Fig. 1 is realized by using R, C and OP-
amp. (TL074), and S/H is composed of a capacitor and a

CMOS-IC for sample and hold circuits (LF389). The out-
put voltage v of the integrator and vn of S/H corresponds
to x and xn, respectively. Figure 5 shows the chaos attractor
of the return map (5) and the laboratory measurement.
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Figure 4: A hysteresis return map
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Figure 5: A hysteresis return map(a = 1.3、200mV/div)

3. A NMPL with a dynamic controller

We introduce some basic definitions for the return map.
Definition: A point xl is said to be a l-periodic point if

Fl(xl) = xl and Fk(xl) � xl for 0 < k < l, where Fl denotes
the l-fold composition of F. A l-periodic point xl is said to
be stable (respectively, unstable) if |DFl(xl)| < 1 (respec-
tively, |DFl(xl)| > 1), where DFl denotes derivative of Fl.
A sequence of a l-periodic point, {xlF(xl), · · · , Fl−1(xl)}, is
said to be a periodic sequence with period l. We refer to a
stable periodic sequence as a periodic attractor. Hereafter
we abbreviate an unstable periodic point by UPP and ab-
breviate an unstable periodic sequence with l-period by l-p
UPS.

Figure 6 shows a block diagram of a NMPL with dy-
namic controller and the timing charts for S W, S/H and
S/H in this diagram. The switch S W is closed if the clock
signal shown as the charts in Fig. 6. is high level. Also,
S/H and S/H2 sample the input signal at the moment when
the corresponding clock signal turns to high level and stores
the sampled value until during the clock signal stays on low
level. Letting the period of the clock signal for S/H2 be l,
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the switch S W is closed during only first 1 of l:

S W :

{
ON, for ln ≤ τ < ln + 1,
OFF, for ln + 1 ≤ τ < l(n + 1).

(6)

The dynamic of the NMPL with dynamic controller is de-
scribed by follows:

ẋ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ((1 − k)xn + kzn−l)
+A((1 − k)xn + kzn−l) − x(n),

ln ≤ τ < ln + 1,
f (x(n)) + Ax(n) − x(n),

ln + 1 ≤ τ < l(n + 1).

(7)

By using similar procedure in Sec. 2, we can derive the
corresponding discreet-time system as the following:

xn+1 =

{
F((1 − k)xn + kzn−l), n = kl,
F(xn), otherwise.

k = 1, 2, · · · (8)

Letting the zn−l be represented by yn, the return map from
(x(ln), y(ln)) at τ = ln to (x(l(n + 1)), y(l(n + 1))) at τ =
l(n + 1) can be given by

xn+l = Fl((1 − K)xn + K · yn)
yn+l = (1 − K)xn + K · yn.

(9)

Note that if xn is identical to yn, the discreet-time system
(9) is equivalent to (3).

Let ξ be an one UPP of l-p UPS of the system (3). letting
x̂n be defined by xn − ξ, letting ŷn be defined by yn − ξ and
letting A ≡ (∂/∂xn)Fl|xn=ξ, the linearized system of (9) in
the neighbor of ξ is described by[

x̂(n + l)
ŷ(n + l)

]
=

[
A(1 − K) AK

1 − K K

] [
x̂(n)
ŷ(n)

]
. (10)

Here, if we set the gain of a controller to

K = − A
1 − A

,

then all of the characteristic root of the linearized system
(10) are identical to zero, that is, the system is to be sta-
ble in the neighbor of ξ. The solution xn started from the
neighbor of ξ at τ = 0 must converge to l-p UPP at τ = 2l.

Figure 7 shows simulation results and laboratory mea-
surements of generating 16 periodic solution by setting pa-
rameters as A = 1.3, l = 16 and K = −1.316

1−1.316 . The solu-
tion is identical to the unstable periodic orbit of the original
chaotic system (3). These attractors as shown in Fig. 7 are
each co-existence depended on the initial conditions.

4. Conclusions

We proposed a novel nonlinear system which consists of
a chaotic system and a dynamic controller. The proposed
system exhibits some stabilized Unstable Periodic Orbits
(abbr. UPO )which are embedded on chaos attractor of the
original chaotic system. Now we try the generalization of
the system and consider engineering applications.
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Figure 6: Nonautonomous PWC with a dynamic controller
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