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Abstract—This paper studies piecewise constant model
of basic DC/DC converters: an extremely simple switched
dynamical system having rich nonlinear phenomena. The
model is transformed into a dimensionless equation charac-
terized by two parameters and a piecewise linear 1D return
map is derived. We then give the parameters conditions
for basic chaotic and periodic phenomena and investigate
rich super-stable periodic phenomena in the discontinuous
conduction mode. We also discuss an application to inter-
leaved buck converters with fast transient process.

1. Introduction

In variety of power electronics circuits nonlinear switch-
ing plays important role not only to realize desired oper-
ation but also to generate rich nonlinear phenomena [1].
DC/DC converters are typical power electronics circuits
and the dynamics can be described by piecewise linear
equation connected by the nonlinear switching: a kind of
switched dynamical system. For the converters there ex-
ist interesting results for chaos and bifurcation phenom-
ena [2]-[6]. Analysis of the phenomena is interesting basic
problem and may contribute to improve the circuits per-
formance [7] [8], however, the analysis is hard because of
complex dynamics and large number of parameters.

This paper studies piecewise constant (ab. PWC ) model
of basic DC/DC converters. The PWC model can be de-
rived by replacing the output load with a DC source pro-
vided the time constant is larger enough than the clock pe-
riod [9] - [11]. This model has piecewise constant vector
field, piecewise linear solution and piecewise linear the re-
turn map. These properties are well suited for theoretical
analysis. In Refs. [9] and [10] such PWC models are used
effectively to analyze bifurcation and spectrum property. In
this paper the PWC model is transformed into a dimension-
less equation where the original parameters are integrated
into two essential parameters. We then derive 1D return
map and clarify the parameters condition for generation of
basic chaotic and periodic phenomena. Especially, we ana-
lyze some of complicated super-stable periodic phenomena
in the discontinuous conduction mode ( ab. DCM ). Such
phenomena in DCM have not been discussed sufficiently
so far in the existing literatures. Experimental confirma-
tion of typical phenomena can be fund in [12]. We also
discuss an application to interleaved buck converters hav-
ing fast transient process and effective current sharing for
lower voltages with higher current capabilities [13] - [16].
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Figure 1: Basic PWC models. (a) Buck converter (b) Boost
converter (c) Buck-boost converter.
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Figure 2: Switching rules

2. PWC Models of Basic DC/DC Converters

Fig. 1 (a) shows the basic buck converter. The switchS
and diodeD can be either of the following three states.

State 1:S conducting,D blocking and 0< i < J
State 2:S blocking,D conducting and 0< i < J
State 3:S andD both blocking andi = 0

As shown in Fig. 2, the inductor currenti increases to a
thresholdJ in State 1, decreases to zero in State 2 and does
not change in State 3. The transition between these three
states is defined by the switching rule depending on the
inductor currenti and a clock signal with periodT : State 1
is changed into State 2 ifi = J ( even ift = nT ), State 2 is
changed into State 1 ift = nT , State 2 is changed into State
3 if i reaches 0 ( even ift = nT ), and State 3 is changed into
State 1 ift = nT , wheren is a nonnegative integer. If the
system operates to (not to) include State 3 then the system
is said to operate in a discontinuous conduction mode (ab.
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DCM) ( continuous conduction mode (ab. CCM) ). In order
to simplify the analysis, we assume that the time constant
RC is much greater than the periodT . In this case the load
can be replaced with a constant voltage sourceV2 [10] and
the circuit dynamics can be simplified into Eq. (1).

L
d
dt

i =


V1 − V2 for State 1
−V2 for State 2
0 for State 3

, 0 < V2 < V1, (1)

where all the circuit elements are assumed to be ideal. This
is the PWC model having piecewise linear solutions. Using
the dimensionless variables and parameters,

τ =
t
T
, x =

i
J
, a =

T
LJ

(V1 − V2), b =
T
LJ

V2, (2)

Eq. (1) and the switching rule are transformed into

d
dτ

x =


a for State 1
−b for State 2
0 for State 3

(3)

State 1→ State 2 ifx = 1
State 2→ State 1 ifτ = n.
State 2→ State 3 ifx = 0
State 3→ State 1 ifτ = n

In a likewise manner we can derive the PWC models of
boost and buck-boost converters as shown in Fig. 1 (b)
and (c), respectively. The switching rules of these models
are the same as the buck converter. The two PWC models
can be transformed into Eq.(3) wherea = T

LJ V1 andb =
T
LJ (V2 − V1) for the boost converter anda = T

LJ V1 andb =
T
LJ V2 for the buck-boost converter. Note that the original
five parameters (T , L, J, V1, V2) of the PWC models are
integrated into the dimensionless two positive parameters
a > 0 andb > 0 of Eq.(3).

3. Piecewise Linear Return Map

Here we derive return map from Eq. (3) and clarify the
basic dynamics. Letxn ≡ x(n) and letI ≡ [0,1]. Since
xn+1 ∈ I is determined byxn ∈ I, we can define the return
map f and the dynamics can be reduced into the iteration:

xn+1 = f (xn), f : I → I. (4)

For the return map we define basic periodic phenomena.
A pint xp ∈ I is said to be a periodic point with period
k if f k(xp) = xp and f l(xp) � xp for 1 ≤ l < k ( l is
meaningless fork = 1 ), where f k is thek-fold composi-
tion of f . A periodic point with period 1 is referred to as
a fixed point. A sequence of periodic points with periodk,
{ f (xp), · · · , f kxp} is said to be a periodic orbit with period
k. The periodic orbit is said to be stable (respectively, su-
perstable ) if|D f k(xp)| < 1 (respectively,D f k(xp) = 0 )
whereD f k(xp) is the slope off k at xp . A stable periodic
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Figure 3: Basic orbits for (a, b) ∈ Da.
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Figure 4: Typical return maps. (a) (a−1, b−1)=(1.61,0.82)∈
Da, (b) (a−1, b−1)=(0.6,2.3) ∈ Db, (c)
(a−1, b−1)=(0.8,0.7) ∈ Dc, (d) (a−1, b−1)=(2.5,1.5) ∈ Dd .

orbit corresponds to a stable periodic waveform in CCM.
A superstable periodic orbit with periodk ( ab. k-SPO )

corresponds to superstable periodic waveform with pe-
riod kT in DCM. If |D f q(x)| > 1 is satisfied for almost all
x ∈ I and some finite integerq, the mapf is ergodic and
has one positive Lyapunov exponent [11]. In this casef is
said to exhibit chaos: it corresponds to chaotic waveform
in CCM. Since the shape of the map depends on the param-
eters, we introduce five subspaces of the parameters.

Da ≡ {(a, b)| a−1 > 1 > b−1}
Db ≡ {(a, b)| a−1 + b−1 > 1, a−1 < 1, b−1 < 1}
Dc ≡ {(a, b)| a−1 + b−1 > 1, a−1 < 1 < b−1}
Dd ≡ {(a, b)| a−1 > 1, b−1 > 1}
De ≡ {(a, b)| a−1 + b−1 < 1}

(5)

In each subspace return map can be described as a piece-
wise linear function and basic dynamics can be clarified.
Fig. 3 illustrates the dynamics for (a, b) ∈ Da. The system
is in State 1 atτ = n and the orbits forn ≤ τ < n + 1 are
classified into three cases: (i)x increases without reaching
the thresholdx = 1, (ii) x reachesx = 1 and decreases
without x = 0, and (iii) x reachesx = 1, decreases, and
reachesx = 0. The return map consists of three segments
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Figure 5: Diagram of SPOs. In (B) the tone is to be dark as
the period of SPO increases.

corresponding to the three cases:

f (xn) =


xn + a for 0 ≤ xn < 1− a
−pxn + β for 1− a ≤ xn < α
0 for α ≤ xn ≤ 1

(6)

α ≡ 1− a(1− b−1), β ≡ 1− b(1− a−1), p ≡ ba−1.

This return map has unique SPO with period 2 or more.
As shown in Fig. 4 (a) this map has flat part and the SPO
must pass through 0: the period can be counted easily in
numerical simulation. For 1< a−1 < 2 and 0≤ b−1 ≤ 1
existence regions of some SPOs can be identified as (a) to
(e) in Fig. 5 (A):

(a) 2-SPO: β ≤ g1(a, b) ≡ p

(
−β

p
+

1
p
+ 1

)

(b) 4-SPO: g1(a, b) < β ≤ g2(a, b)

(c) 3-SPO: β < g3(a, b) ≡ −p2

−p + 1

(
−β

p
+

1
p
+ 1

)

(d) 5-SPO: g4(a, b) ≤ β ≤ g5(a, b)

(e) 6-SPO: g6(a, b) ≤ β ≤ g7(a, b)
(7)
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Figure 6: Typical orbits. (b) 4-SPO for (a−1, b−1) =
(1.48,0.838), (c) 3-SPO for (a−1, b−1) = (1.87,0.512), (d)
5-SPO for (a−1, b−1) = (1.738,0.91), (h) Unstable fixed
point for (a−1, b−1) = (1.8,0.45)

where

g2(a, b) ≡ p3

p2 − p + 1

(
−β

p
+

1
p
+ 1

)

g4(a, b) ≡ −p4

−p3 + p2 − p + 1

(
−β

p
+

1
p
+ 1

)

g5(a, b) ≡ p3 + p
p2 − p + 1

(
−β

p
+

1
p
+ 1

)

g6(a, b) ≡ −p4 + p
−p3 + p2 − p + 1

(
−β

p
+

1
p
+ 1

)

g7(a, b) ≡ p5

p4 − p3 + p2 − p + 1

(
−β

p
+

1
p
+ 1

)

Except for these regions the map has rich SPOs as
shown in Fig. 5 (B). Special attention should be paid
for the curve (h): the map has an unstable fixed point
xf = (1+ p)

(
− βp + 1

p + 1
)

and f (0) = x f is satisfied. Near
this many complicated SPOs can be observed. We then de-
scribe return maps in subspacesDb to De. Fig. 4 illustrates
typical shapes of the maps.

Return map for (a, b) ∈ Db is given by Eq. (8).

f (xn) =
{−pxn + β for 0 ≤ xn < α

0 for α ≤ xn ≤ 1
(8)

If p < 1 the map has a stable fixed point. Ifp > 1 the map
has a SPO with period 2.

Return map for (a, b) ∈ Dc is given by Eq. (9): the map
has a stable fixed point as shown in Fig. 4 (c).

f (xn) = −pxn + β, for 0 ≤ xn ≤ 1. (9)

Return map for (a, b) ∈ Dd is given by Eq. (10).

f (xn) =
{

xn + a for 0 ≤ xn < 1− a
−pxn + β for 1− a ≤ xn < 1

(10)
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Figure 7: 3-phase synchronization in DCM for (a, b) =
(1.00,0.80). X ≡ x1 + x2 + x3.

If p < 1 the map has a stable fixed point. Ifp > 1 the
map exhibits chaos as discussed in [17].

Return map for (a, b) ∈ De is given by Eq. (11): the map
has a superstable fixed pointx f = 0.

f (xn) = 0 for 0≤ xn ≤ 1. (11)

4. Application to Interleaved Buck Converters

Since the superstable periodic waveform in DCM has
vary fast transient process, it may be useful in the inter-
leaved buck converters ( ab. IBC [13] ). The IBC is con-
structed by interleavingN identical buck converters be-
tween voltage sourceV1 and the load. The PWC model
is described by Equation (12).

d
dτ

xi =


a for State 1
−b for State 2
0 for State 3

i ∈ {1, · · · ,N}, (12)

State 1→ State 2 ifxi = 1
State 2→ State 1 ifxi = the minimum atτ = n.
State 2→ State 3 ifxi = 0
State 3→ State 1 ifτ = n

wherexi is proportional to the inductor current ofi-th con-
verter and (a, b) is given by Equation (2). Note that the
connection is realized by the switchings to State 1. Fig. 7
shows typical waveforms whereX ≡ x1 + x2 + x3 is pro-
portional to the output current by the current sharing. In
this case ripple reduction is possible with vary fast transient
process. We can guarantee that the IBC exhibitsN-phase
synchronization in DCM if

N − 1 < a−1 + b−1 < N, or equivalently

LJV1

NV2(V1 − V2)
< T <

LJV1

(N − 1)V2(V1 − V2)
.

(13)

It should be noted that adjustingT can realize thisN-phase
synchronization for any values ofV1 andV2.

5. Conclusions

The PWC models of basic DC/DC converters is dis-
cussed. Using the piecewise linear return map, basic pe-
riodic and chaotic phenomena are clarified in terms of the
two essential parameters. In the DCM, we have analyzed
some of interesting SPOs. Application to efficient inter-
leaved converters is also introduced. Future problems in-
clude analysis of SPOs in DCM and implementation of
practical circuits.
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