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Abstract—Previously, switched dynamical systems
have been studied in terms of switching that occurs at
a common border between two regions in the same
space as the system trajectory crosses the border.
However, models arising from this consideration can-
not cover systems whose trajectories do not actually
“cross” the border. A typical example is the current-
mode controlled boost converter whose trajectory is
“reflected” at the border. In this paper, we propose a
general method to model switched dynamical systems.
Also, we suggest an analytical procedure to determine
periodic solutions and their stability. The method is
developed in terms of solution flows and no solution
has to be explicitly written. Most practical switched
dynamical systems can be covered by this modelling
and analytical method.

1. Introduction

Problems associated with switched dynamical sys-
tems are important not only in theoretical context
but also in practice. Many practical systems, such as
power converters, chaos generators, variable structure
controllers, etc., can be modelled as switched dynami-
cal systems. In recent decades, research into this topic
and its applications has attracted much attention.

Up to now, models for studying switched dynamical
systems have focused on “switchings” as the system
trajectory crosses some borders in the state space. Es-
sentially, one or more pre-defined common borders di-
vide the state space into two or more separate regions.
The dynamics in different regions are governed by dif-
ferent system equations. As the trajectory crosses any
border and moves into another region, switching oc-
curs and the system is redefined [1–3], as illustrated in
Fig. 1.

This work was supported in part by Hong Kong RGC under
a competitive grant (No. PolyU5241/03E).

Several questions arise from this modelling ap-
proach. Does the trajectory move in the same space
all the time? Does it always move across the border
as it hits the border?

An example of the current-mode controlled boost
converter may shed some light on the modelling prob-
lem. Referring to Fig. 2(a), the switch is turned off
when the inductor current iL is equal to a reference
current Iref . A clock signal turns on the switch pe-
riodically at t = kT . During the on-time, iL climbs
to the value of Iref , and then ramps down during the
off-time. A typical waveform of the inductor current is
shown in Fig. 2(b). Thus, we can see that (i) the solu-
tion never crosses the “border” at the turn-off instant,
instead it is being “reflected” there; (ii) one border is
available for one state, i.e., border is not common. To
cover such systems, we need to revise the modelling
method.

To analyze the dynamical behavior of a system, pe-
riodic solutions and their stability are often consid-
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Figure 1: Present models of switched dynamical sys-
tems.
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Figure 2: (a) A current-mode controlled boost con-
verter. (b) Inductor current waveform.

ered. By now, most studies are formulated in terms of
piecewise linear ordinary differential equations, whose
solutions are usually written as exponential functions.
However, we describe the solution of a switched sys-
tems in term of the flow in each space and propose
a computation method, independent of the form of
solutions. Our method is even capable of piecewise

nonlinear systems.

2. Method

2.1. Model for switched dynamical systems

The following general considerations can overcome
the shortcomings of the previously used models, and
hence are applicable to most switched systems.

1. Each subsystem moves in its own space. Spaces
are isolated (not divided).

2. There is at least one border in each space. Solu-
tions can only move in one side of the border(s).
When it hits the border in its space, switching
occurs.

3. Switching action is not border crossing, instead it
is “jumping between spaces”.

Let us consider a switched dynamical system con-
sisting of m subsystems: S1, S2, · · · , Sm.

S1 : ẋ = f1(x, λ1), x ∈ Rn,
...

Sm : ẋ = fm(x, λm), x ∈ Rn,

(1)

where λ1,2,···,m are system parameters. There are m
spaces, namely, M1, M2, · · · , Mm, corresponding to the
m subsystems. The borders in each space are

B1 = {x ∈ Rn, t ∈ R : β1(.) = 0}
...

Bm = {x ∈ Rn, t ∈ R : βm(.) = 0}

(2)

where β1,2,···,m are the switching conditions. Note that
β may not be a single equation, since multi-borders
are possible for each space and solution jumps to a
different space at a border. Thus, Mk(k = 1, · · · , m) is
the portion obtained by removing the part in one side
of the “border” Bk(k = 1, · · · , m),

M1 = {(x, t) ∈ Rn × R : β1(.) ≥ (or ≤)0}
...

Mm = {(x, t) ∈ Rn × R : βm(.) ≥ (or ≤)0}

(3)

The solution of the system in Mk is governed by the
state equations corresponding to Sk, as given in (1).
Suppose the solution in Mk(k = 1, · · · , m) exists and
is given by

x(t) = ϕ1(t, x0), x(0) = x0, (x, t) ∈ M1

...
x(t) = ϕm(t, x0), x(0) = x0, (x, t) ∈ Mm

(4)

where x0 is the initial point.
The flow jumps from one space to another when it

hits the border. Note that, the jumps between spaces
do not lead to jumps of the states; thus, the point at
which a flow hits the border can be thought of as the
initial point of the successive flow in the next space.
This formulation is illustrated in Fig. 3.

If βk(.) = βk+1(.), borders Bk and Bk+1 are iden-
tical. In that case, Mk and Mk+1 are two sides of a
common border. This condition can often be observed
in systems whose switching is simply controlled by a
comparator (e.g., in the voltage-mode controlled buck
converter [2]). This is a special case covered by our
method.

2.2. Periodic solution and first return map

We now consider a general fundamental solution.
Starting at x0, a solution flow moves in M1 at first,
and then touches the border B1 at x1 after time τ1.
Hitting the border causes a jump to M2. Similarly,
hitting border B2 ∈ M2 will lead to a jump to M3.
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Figure 3: An example illustration of our modelling
method consisting three subsystems.

In this way, the solution flow moving in Mk will hit
specific border Bk and switch to Mk+1. Finally, it will
get to Mm, the last space, and then return to M1 at
xm at time τm. Thus, we can define a map as

Fm : Rn 7→ Rn; x0 7→ xm (5)

which is similar to the definition of Poincaré map for
autonomous systems. We call it First Return Map.

The flow of the fundamental solution described
above can be constructed by following equations:

x1 = ϕ1(τ1, x0) (x ∈ M1)
...

xm = ϕm(τm − τm−1, xm−1) (x ∈ Mm)

(6)

Moreover, because the point where the flow hits the
border satisfies the switching conditions (2), we have

β1(x1, τ1) = 0 (border B1)
...

βm(xm, τm) = 0 (border Bm)

(7)

Because the flow is a fundamental periodic solu-
tion only if xm = x0, we can replace xm with x0.
Thus, from (6) and (7), we have m × n + m scalar
equations. Meanwhile, unknowns of (6) and (7) are
{x0, · · · , xm−1, τ1, · · · , τm}, and the total scalar num-
ber is m × n + m. Thus, we can solve the periodic
solution using an appropriate numerical method.

2.3. Analysis of stability

Stability of a periodic solution can be determined
from the Jacobian of the first return map defined in
(5), which is described by ∂xm/∂x0. Since the flow is
piecewise defined, we rewrite the Jacobian as

∂xm

∂x0

=
∂xm

∂xm−1

∂xm−1

∂xm−2

· · ·
∂x2

∂x1

∂x1

∂x0

=

m
∏

i=1

∂xi

∂xi−1

(8)

From the ith equation of (6), we get

∂xi

∂xi−1

=
∂ϕi

∂t

∂τi

∂xi−1

−
∂ϕi

∂t

∂τi−1

∂xi−1

+
∂ϕi

∂xi−1

(9)
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Figure 4: Model of current mode boost converter.

where ϕi and ∂ϕi/∂xi−1 denote ϕi(τi − τi−1, xi−1)
and ∂ϕi/∂x|x=xi−1

, respectively. Since xi and xi−1

satisfy the switching conditions: βi(xi, τi) = 0 and
βi−1(xi−1, τi−1) = 0, from which we can write

∂βi

∂xi−1

=
∂βi

∂x

∂xi

∂xi−1

+
∂βi

∂t

∂τi

∂xi−1

= 0

∂βi−1

∂xi−1

=
∂βi−1

∂x
+

∂βi−1

∂t

∂τi−1

∂xi−1

= 0

(10)

Solving (10), we get ∂τi/∂xi−1 and ∂τi−1/∂xi−1.
Putting them in (9) yields

∂xi

∂xi−1

=

fi(ϕi)
∂βi−1

∂x
+

∂ϕi

∂xi−1

∂βi−1

∂t
∂βi

∂t
+ fi(ϕi)

∂βi

∂x

·

∂βi

∂t
∂βi−1

∂t

(11)

where fi(ϕi) represents ∂ϕi/∂t. Note that ∂ϕi/∂xi−1

can be obtained by solving

d

dt
(

∂ϕi

∂xi−1

) =
∂fi

∂x
(

∂ϕi

∂xi−1

),
∂ϕi

∂xi−1

∣

∣

∣

∣

t=0

= In (12)

Thus, substituting (11) into (8) and using an appropri-
ate numerical method, we can calculate the Jacobian
of the first return map of a specific periodic solution.
Finally, by finding the roots of the characteristic equa-
tion, we can determine the stability of the periodic
solution.

3. Current-Mode Controlled Boost Converter

Switched dynamical systems can be found in many
practical applications. In this section, we will investi-
gate the current-mode boost converter, which has been
widely studied by other authors, and we reexamine it
here with our new model and method.

3.1. Model description

For the boost converter shown in Fig. 2, which may
operate in continuous conduction mode (CCM) and
discontinuous conduction mode (DCM) [4]. The model
can be represented schematically as in Fig. 4.

61



We first consider the space M1. The system with
state x = [vC , iL]T is given by

S1 : ẋ =

[

−1/RC 0
0 0

]

x +

[

0
1/L

]

E (13)

In M1, there is a border B1 defined by

B1 = {(x, t) ∈ Rn × R : β1 = x(2) − Iref = 0}. (14)

When x hits B1, switching occurs and x jumps to M2,
where the system becomes

S2 : ẋ =

[

−1/RC 1/C
−1/L 0

]

x +

[

0
1/L

]

E. (15)

Two borders are available in M2. One corresponds to
the clock signal that resets the switch, the other cor-
responds to the case when the inductor current drops
to zero. We can write the border functions as

B2a = {(x, t) ∈ Rn × R : β2a = t − kT = 0}

B2b = {(x, t) ∈ Rn × R : β2b = x(2) = 0}
(16)

Once x touches B2a, it will return to M1 (as the solid
curve indicate). Moreover, if it reaches B2b ahead of
B2a, it jumps to M3. The dynamics in M3 is described
simply by

S3 : ẋ =

[

−1/RC 0
0 0

]

x (17)

When the clock signal arrives, i.e., when x hits B3,

B3 = {(x, t) ∈ Rn × R : β3 = t − kT = 0}, (18)

the state will return to M1 (as shown by the dashed
curve). Thus any solution of the current-mode con-
trolled boost converter can be solved by the method
introduced in Sec. 2.

3.2. Periodic solutions and bifurcation

We consider the simplest case of the period-1 so-
lution, which is the preferred operation in practice.
Basically, the solution under CCM can be constructed
as

x1 = ϕ1(τ1, x0)
x0 = ϕ2(τ2 − τ1, x1)
x1(2) − Iref = 0
τ2 − T = 0

(19)

Thus, five scalar unknowns x1, x2, τ1 can be obtained.
Moreover, by fixing some parameters in Fig. 2 as

L = 1.5mH, T = 100µs, Iref = 0.8A

we get the bifurcation diagram shown in Fig. 5. Three
bifurcation curves are given corresponding to different
capacitor values. Stable period-1 solutions can be ob-
served on the left-hand side of these curves. As we
move across the bifurcation curves from left to right,
the solution becomes period-2 and exhibit more com-
plicated behavior, such as border collision and chaos.
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Figure 5: Bifurcation diagram of boost converter in
(E, R) plan.

4. Conclusion

In this paper, we propose a general framework for
modelling and analyzing switched dynamical systems.
The method is capable of modelling most switched sys-
tems, and the main features are: (i) Subsystems and
their borders are defined in separate spaces. This al-
lows to model the systems without a common border,
thus covering a much wider class of switching scenar-
ios. (ii) The method is based on tracking the solution
flow, instead of finding the solution. Piecewise lin-
ear/nonlinear models can be analyzed by this general
method. To demonstrate the modelling approach, we
consider the current-mode controlled dc/dc converter
and briefly illustrate the application procedure.
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