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Abstract—Continuous-discrete or hybrid systems have
experienced a growing interest by various researchers over
the last decade. They serve as models for applications in
modern electronics and control engineering. In this paper a
basic model of continuous-discrete systems is provided. It
covers a variety of systems of practical use. For simple con-
tinuous subsystems switching schemes are introduced and
discussed in a systematic manner. For the case of chaot-
ically working systems a statistical analysis, i.e. the esti- x
mation of statistical characteristics of the output signal is
treated. The methods presented can be directly used for
the analysis and design of power electronic systems such
as charge pumps, DC-DC converters and switching motor
drivers. The paper has tutorial character.

Figure 2: Mixed time — event control.
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) Figure 3: Time and event control.
1. Introduction

Hybrid systems are common parts in modern electronioC-DC converters. We note that this is also a special case
systems [1]. They consist of a continuous subsystem ard Fig. 2.
a discrete subsystem, see Fig. 1. The discrete subsystenm the analysis of hybrid systems often some approxima-
tion is possible that allows to reduce the order of the sys-
tem. The case of one-dimensional systems is investigated
in the sequel.

2. One-Dimensional Systems

Figure 1: Hybrid system.

consists of an iterated m&pand a delay uniD. The state
equation is

b1 = GlH) (1)

The continuous subsystem consists of an integrator block Figure 4: Vertical control.

and a static analog patt. It is described by the state equa-

tion Fig. 4 depicts a vertically controlled system. Depending
dl = DX, 1) . (2) on the outputQ of the flip-flop the switchS applies the
ot valuec; or —c;y to the integrator and the statét) decreases

The functionl” defines the switching conditions from theor increases linearly with time. Whet{t) exceedsq the

time t and the statex. It is represented by a manifold in Flip-Flop is reset byComp and whenx(t) falls belowx,

thex—t space (Fig. 2). Fig. 3 depicts two inportant speciathe Flip-Flop is set byComp. Vertical switching schemes

cases the pure time or horizontal control and pure event always include a state feedback.

vertical control. A control scheme consisting of a mix of A horizontally controlled system is depicted in Fig. 5.

pure time conditions and pure event conditions appears irhe switch is controlled by a sequence of control tirgs
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Figure 5: Horizontal control.
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Figure 6: State trajectory.

Hybrid system analysis
Vertical mapG Horizontal maH
Bifurcation analysis Power density spectrumn
}/alue control optimisation Autocorrelation funktion
O Density calculation
L

andty n. They can be generated by a value to time converter
(VTC). The VTC can be realised e.g. by Fig. 4.

Tab. 1 summarises the state trajectories and the maps
vertical and horizontal control. The ocurrence times of s

and reset events are Table 3: Hybrid system analysis.
Tin = T2n-1+tlin
Ton = Tin+tton. (3)

(no state feedback — see Fig. 5) this is not possible in gen-
A third control scheme is slope control (Tab. 2). Here theral. However in our case of a piecewise linear state-time

sequence of the slopes = ( ¢ ) is generated by a return function a conversion function

mapC (Tab. 2). The switching instants can be controlled tn = K (Xn) 4)
horizontally or vertically. Vertical control corresponds to

frequency modulation (FM) and horizontal control corrécan be found that allows to extract horizontal values from
sponds to amplitude modulation (AM). the sequence of vertical control values and vice versa.

Both mapsG andH in Tab. 1 have their special appli- Three important special cases are discussed in the next sec-
cation in the analysis of hybrid systems as shown in Tab. {fn.

Often an equivalence is desired to derivdrom G and

. . . . : 3. Special control schemes
vice versa. Becaust includes difference information only P

Constant Constant
upper value lower value
A A U1
XE AT / X(t) /\
vertical control \/\[\
(X1 )=G( % ) N \
&t t
g1(X) = X1 01(X) = 9g(x1)
%2(x) = g(x2) 92(X) =Xz
kl(xn) _ Xl;;z,n kl(xn) _ Xl‘réIXZ
i koln) = 44
horizontal control
(the1 )=H(th) Table 4: Constant limit vertical control, [1], [2], [3].
Table 1: Vertical and horizontal control. Firstly we consider two control schemes where the upper

or lower switching level is constant. Tab. 4 depicts these
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cases and shows the corresponding conversion function (4). fx(X)

Both schemes are used in DC-DC converters (current pro- f“xl f)g KX)
grammed mode). They generally have the disadvantage . T%g(?() Do
that the mean valuen depends on the ma@ and hence fx,

G interferes with the value control if the constator re- £ ! : P
spectivelyx; is used as correcting variable. N

To overcome this problem another control scheme that X

has not been published yet to our knowledge is introduced
in Tab. 5. It uses a constant mean value and the upper and
lower limits vary symmetrically with respect to the mean
value. The differenca, between the upper and lower limit with the normalisation constant

is generated by a return map It is ideal for this purpose P
N=[ ()~ b)) dyk=mgs-mg1  (6)

Figure 7: Value density, general case.

Control scheme Realisation

i.e. the difference of the mean values@fandx,

X(t) z . : :
e G %Xl Fig. 7 depicts an example whexgandx, are uniformly
: ~E

m-— XA\ distributed.

T X2 From Eq. 5 we can directly derive the density of the spe-
cial cases in Tab. 4. Constant upper value control results
in

17X <
T () = { e by = ™
X1n = M+ Zy kli% 0 X>X1.
Xon=M—12, ko = %”
fx(x) f
Table 5: Symmetrical control scheme. f x2 (X) i, (X)
X2 o
aszis the modulation input that is independend from the x / ‘
mean value. Hence value control and modulation do not ‘ X1 %
interact. The scheme is realised by combining the scheme
of Tab. 5 with the system in Fig. 4. Figure 8: Value density, constaxi.
For the slope controlled case the conversion function is ) _ ) ) )
summarised in Tab. 6. As the slopesandc, are deter-  Fig. 8 depicts the corresponding density whgtis uni-
formly dirtributed. The constart; corresponds to &-
Cr1=G(C) ey | sl
Vertical Horizontal onstant lower value control results in
slope control slope control 0 X < Xo
k _ X1—X _ fX(X) = Lx 1 f d g 8
1(X) = 372 | Xan=Xzn-1+Cynt1 7/ e (I=Fa(Y)dy x>x2.
ko(X) =222 | x5, =X1n—Cont
2%) € 2~ An T a0z The shape of the density is obtained by mirroring Fig. 8

Table 6: Slope control schemes. horizontally. _ _
For the symmetrical control scheme of Tab. 5 the density

. _ _ is obtained by
mined by the converters input and output voltages this con-

. . X
trol scheme is not applicable to DC-DC converters. fu(X) = %[ f(M—x) — fu(x—m)dy 9)
4. Statistical Analysis Fig. 9 shows an example.
4.1. Densities X(f”) fo(m—x) fo(x—m)
Densities are used in the analysis of the static properties 9 ] :
of the state signal(t). Let fy, (x) and fy,(x) be the densi- fi 7
ties of the upper limik; and the lower limit, respectively. / )
Then the density of the signa(t) calculates as X
1 /x Figure 9: Value density, symmetrical control.
o= [ (- fdy O
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4.2. Moments

S (w)
From Eq. (5) we obtain for theth moment of the signal S(w) = o (17)
X(t) . :
— 1 My ne1— Mgt (10) Et]:dpt?w[esr] density spectrum of the pulse process is calcu-
’ n—+ 1 rn)(l,l - n]xz,l y
From this equation the moments for the special control S (w) = lim EE (\Fr(w)lz) (18)
schemes in Tabs. 4 and 5 can be derived. The result is wT
1 1 with
Myn = Ntlx—mos O™ — My nia) (11) N(ET) _ _
17 el Frio)= 3 Aunelin—Aypelan, (19)
for constant upper value control, n=1
e — 1 My ni1—xgtt 12) 5. Conclusions
n=
N+l Mgeai—x We have given an overview over control and analysis of
for constant lower value control and hybrid.systc_ems. For one-dimensional systems we proposed
a detailed library of control schemes. A new advantageous
My = 1 Mmignit—Mngnit (13) control scheme has been introduced. It allows the separa-
T n+l Mpg,1 tion between value control and dynamical properties of the
system.

for the constant mean value control. The first and second gyagistical analysis of one-dimensional piecewise linear
moment ofx(t) are used for calculation of the mean valugy, time systems has been presented. The results from previ-

of x(t) which is important for an outer control l00p and 5 work can be derived as special cases from the analysis
the variance which gives the total AC power of this procesg,gyits proposed.

which is important for EMI considerations. Further generalisation of the analysis to other kinds of

4.3. Power Density Spectrum, [1], [3], [4], [5], [6] hybrid systems is due to future work.
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