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Abstract—Continuous-discrete or hybrid systems have
experienced a growing interest by various researchers over
the last decade. They serve as models for applications in
modern electronics and control engineering. In this paper a
basic model of continuous-discrete systems is provided. It
covers a variety of systems of practical use. For simple con-
tinuous subsystems switching schemes are introduced and
discussed in a systematic manner. For the case of chaot-
ically working systems a statistical analysis, i.e. the esti-
mation of statistical characteristics of the output signal is
treated. The methods presented can be directly used for
the analysis and design of power electronic systems such
as charge pumps, DC-DC converters and switching motor
drivers. The paper has tutorial character.

1. Introduction

Hybrid systems are common parts in modern electronic
systems [1]. They consist of a continuous subsystem and
a discrete subsystem, see Fig. 1. The discrete subsystem
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Figure 1: Hybrid system.

consists of an iterated mapG and a delay unitD. The state
equation is

µn+1 = G(µn) . (1)

The continuous subsystem consists of an integrator block
and a static analog partΦ. It is described by the state equa-
tion

dx
dt

= Φ(x,µ) . (2)

The functionΓ defines the switching conditions from the
time t and the statex. It is represented by a manifold in
thex− t space (Fig. 2). Fig. 3 depicts two inportant special
cases the pure time or horizontal control and pure event or
vertical control. A control scheme consisting of a mix of
pure time conditions and pure event conditions appears in
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Figure 2: Mixed time – event control.
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Figure 3: Time and event control.

DC-DC converters. We note that this is also a special case
of Fig. 2.

In the analysis of hybrid systems often some approxima-
tion is possible that allows to reduce the order of the sys-
tem. The case of one-dimensional systems is investigated
in the sequel.

2. One-Dimensional Systems
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Figure 4: Vertical control.

Fig. 4 depicts a vertically controlled system. Depending
on the outputQ of the flip-flop the switchS applies the
valuec1 or−c2 to the integrator and the statex(t) decreases
or increases linearly with time. Whenx(t) exceedsx1 the
Flip-Flop is reset byComp1 and whenx(t) falls belowx2

the Flip-Flop is set byComp2. Vertical switching schemes
always include a state feedback.

A horizontally controlled system is depicted in Fig. 5.
The switch is controlled by a sequence of control timest1,n
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Figure 5: Horizontal control.
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Figure 6: State trajectory.

andt2,n. They can be generated by a value to time converter
(VTC). The VTC can be realised e.g. by Fig. 4.

Tab. 1 summarises the state trajectories and the maps of
vertical and horizontal control. The ocurrence times of set
and reset events are

τ1,n = τ2,n−1 + t1,n

τ2,n = τ1,n + t2,n . (3)

A third control scheme is slope control (Tab. 2). Here the

sequence of the slopescn =
(

c1,n
c2,n

)
is generated by a return

mapC (Tab. 2). The switching instants can be controlled
horizontally or vertically. Vertical control corresponds to
frequency modulation (FM) and horizontal control corre-
sponds to amplitude modulation (AM).

Both mapsG andH in Tab. 1 have their special appli-
cation in the analysis of hybrid systems as shown in Tab. 3

Often an equivalence is desired to deriveH from G and
vice versa. BecauseH includes difference information only

x(t)

G t

vertical control
( xn+1 ) = G( xn )

t

H

y(t)

horizontal control
( tn+1 ) = H ( tn )

Table 1: Vertical and horizontal control.

cn+1 = C(cn)

C

x(t)

t

Vertical slope control
(FM)

x1 = const.

x2 = const.

C

x(t)

t

Horizontal slope control
(AM)

t1 = const.

t2 = const.

Table 2: Slope control schemes.

Hybrid system analysis
Vertical mapG Horizontal mapH

Bifurcation analysis Power density spectrum
Value control optimisation Autocorrelation funktion

Density calculation

Table 3: Hybrid system analysis.

(no state feedback – see Fig. 5) this is not possible in gen-
eral. However in our case of a piecewise linear state-time
function a conversion function

tn = K(xn) (4)

can be found that allows to extract horizontal values from
the sequence of vertical control values and vice versa.
Three important special cases are discussed in the next sec-
tion.

3. Special control schemes

Constant Constant
upper value lower value

t

x(t)

g2 t

x(t)
g1

g1(x) = x1 g1(x) = g(x1)
g2(x) = g(x2) g2(x) = x2

k1(xn) = x1−x2,n
c1

k1(xn) = x1,n−x2
c1

k2(xn) = x1−g(x2,n)
c2

k2(xn) = x1,n−x2
c2

Table 4: Constant limit vertical control, [1], [2], [3].

Firstly we consider two control schemes where the upper
or lower switching level is constant. Tab. 4 depicts these
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cases and shows the corresponding conversion function (4).
Both schemes are used in DC-DC converters (current pro-
grammed mode). They generally have the disadvantage
that the mean valuem depends on the mapG and hence
G interferes with the value control if the constantx1 or re-
spectivelyx2 is used as correcting variable.

To overcome this problem another control scheme that
has not been published yet to our knowledge is introduced
in Tab. 5. It uses a constant mean value and the upper and
lower limits vary symmetrically with respect to the mean
value. The differencezn between the upper and lower limit
is generated by a return mapg. It is ideal for this purpose

Control scheme Realisation
x(t)

t

m

g

zn
G

− x2

x1+

+T

z

m

zn+1 = g(zn)

x1,n = m+zn k1 = zn−1+zn
c1

x2,n = m−zn k2 = 2zn
c2

Table 5: Symmetrical control scheme.

asz is the modulation input that is independend from the
mean value. Hence value control and modulation do not
interact. The scheme is realised by combining the scheme
of Tab. 5 with the system in Fig. 4.

For the slope controlled case the conversion function is
summarised in Tab. 6. As the slopesc1 andc2 are deter-

cn+1 = G(c)
Vertical Horizontal

slope control slope control

k1(x) = x1−x2
c1

x1,n = x2,n−1 +c1,nt1
k2(x) = x1−x2

c2
x2,n = x1,n−c2,nt2

Table 6: Slope control schemes.

mined by the converters input and output voltages this con-
trol scheme is not applicable to DC-DC converters.

4. Statistical Analysis

4.1. Densities

Densities are used in the analysis of the static properties
of the state signalx(t). Let fx1(x) and fx2(x) be the densi-
ties of the upper limitx1 and the lower limitx2 respectively.
Then the density of the signalx(t) calculates as

fx(x) =
1
η

Z x

−∞
( fx2(y)− fx1(y))dy (5)

x

fx(x)
f̃x1

fx1(x)
fx2(x)

f̃x2

f̃x

Figure 7: Value density, general case.

with the normalisation constant

η =
Z ∞

−∞
( fx2(y)− fx1(y))dydx = mx1,1−mx2,1 (6)

i.e. the difference of the mean values ofx1 andx2

Fig. 7 depicts an example wherex1 andx2 are uniformly
distributed.

From Eq. 5 we can directly derive the density of the spe-
cial cases in Tab. 4. Constant upper value control results
in

fx(x) =
{ 1

η
R x
−∞ fx2(y)dy x≤ x1

0 x > x1 .
(7)

x

f̃x

fx1(x)

x1

fx(x)

f̃x2

fx2(x)

Figure 8: Value density, constantx1.

Fig. 8 depicts the corresponding density whenx2 is uni-
formly dirtributed. The constantx1 corresponds to aδ-
density.

Constant lower value control results in

fx(x) =
{

0 x≤ x2
1
η

R x
−∞ (1− fx1(y))dy x> x2 .

(8)

The shape of the density is obtained by mirroring Fig. 8
horizontally.

For the symmetrical control scheme of Tab. 5 the density
is obtained by

fx(x) =
1
η

Z x

−∞
fg(m−x)− fx(x−m)dy (9)

Fig. 9 shows an example.

x

f̃x

fx(x)

m

fg(m−x) fg(x−m)
f̃g

Figure 9: Value density, symmetrical control.
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4.2. Moments

From Eq. (5) we obtain for thenth moment of the signal
x(t)

mx,n =
1

n+1
mx1,n+1−mx2,n+1

mx1,1−mx2,1
. (10)

From this equation the moments for the special control
schemes in Tabs. 4 and 5 can be derived. The result is

mx,n =
1

n+1
1

x1−mx2,1
(xn+1

1 −mx2,n+1) (11)

for constant upper value control,

mx,n =
1

n+1
mx1,n+1−xn+1

2

mx1,1−x2
(12)

for constant lower value control and

mx,n =
1

n+1
mm+g,n+1−mm−g,n+1

m2g,1
(13)

for the constant mean value control. The first and second
moment ofx(t) are used for calculation of the mean value
of x(t) which is important for an outer control loop and
the variance which gives the total AC power of this process
which is important for EMI considerations.

4.3. Power Density Spectrum, [1], [3], [4], [5], [6]

The power density spectrum characterises the dynamics
of the processx(t). The signalx(t) can be understood as
a twicely integrated pulse process. Thus it can be modeled
by a linear filtered pulse process (Fig. 10)

x(t)

t

ξ(t)
ξ(t)

t1,n t2,n

A1,n A2,n

H(ω) = 1
ω2

Figure 10: Pulse process model.

ξ(t) =
∞

∑
n=0

(A1,nδ(t− τ1,n)−A2,nδ(t− τ2,n)) . (14)

A·,n are the pulse intensities

A1,n = −c1,n−c2,n

A2,n = c1,n +c2,n (15)

andτ1,n andτ2,n are the pulse occurence times from Eq. (3).
The linear filter

H(ω) =
1

ω2 (16)

performs double integration. Its output power density spec-
trum is

Sx(ω) =
Sξ(ω)

ω2 . (17)

The power density spectrum of the pulse process is calcu-
lated by [5]

Sξ(ω) = lim
T→∞

1
T

E
(
|FT(ω)|2

)
(18)

with

FT(ω) =
N(ξ,T)

∑
n=1

A1,nejωτ1,n−A2,nejωτ2,n . (19)

5. Conclusions

We have given an overview over control and analysis of
hybrid systems. For one-dimensional systems we proposed
a detailed library of control schemes. A new advantageous
control scheme has been introduced. It allows the separa-
tion between value control and dynamical properties of the
system.

Statistical analysis of one-dimensional piecewise linear
in time systems has been presented. The results from previ-
ous work can be derived as special cases from the analysis
results proposed.

Further generalisation of the analysis to other kinds of
hybrid systems is due to future work.
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