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Abstract—This paper concerns the bifurcation and ori-
gin of nontarget periodic orbits, which are unexpectedly
stabilized under the time delayed feedback control of a two-
well Duf ng system. We reveal that the annihilation of the
nontarget orbits by saddle-node bifurcation gives a crite-
rion for the disappearance of the global structure governed
by original chaos under the control.

1. Introduction

For more than a decade, controlling chaos has been an
active research  eld in nonlinear science [1]. With taking a
cue from the key concept proposed by Ott et al. [2], several
advanced methods have been designed to stabilize unsta-
ble periodic orbits embedded in chaotic attractors. One of
the strategies, called time delayed feedback control, is well-
known as a practical method for controlling chaos [3]. This
control method is easily applied to experimental systems,
using only the difference signal between the present out-
put signals and the past ones. The implementation does not
need the exact model of the controlled object nor compli-
cated computer processing for reconstruction of underly-
ing dynamics. With these practical advantages, the control
method has applications in various research  elds ; elec-
tronic circuits [4], laser systems [5], gas charge systems [6],
mechanical oscillators [7], chemical systems [8] and so on.
In addition, theoretical analysis has been developed on the
basis of the stability analysis of the target unstable periodic
orbits (see Ref. [9] and the references therein). One of the
important results is the derivation of the odd number con-
dition, which gives a class of unstable periodic orbits that
cannot be stabilized by the control method and its extension
[10, 11]. The odd number condition was  rst derived for
discrete systems [12] and subsequently extended to contin-
uous systems [13, 14]. Against this negative result, Pyragas
improved the control method to circumvent the odd number
condition [15].

On the other hand, the control method still has funda-
mental problems on the control performance related to the
global dynamics of the controlled system [16]. We here
note that the global dynamics of the controlled system is
described by the structure of the phase space in function
space, which has in nite dimension, since the controlled
system is modeled by differential difference equations.
With relevance to the global dynamics in function space,
the authors have recently shown the domain of attraction

for stabilized orbits possibly has a self-similar structure
in their boundaries [17]. They have also clari ed the in-
heritance of the global chaotic dynamics from the original
chaotic system has destructive in uences on control perfor-
mances, such as complicated domain of attraction and long
chaotic transient behavior in the controlled systems [18].
These results clearly show that the global structure of the
phase space should be considered for advanced use of the
control method.

In this paper, we numerically discuss the multiple steady
states in the time delayed feedback controlled two-well
Duf ng system. The two-well Duf ng system is here con-
sidered as a model of the magnetoelastic system [19]. The
controlling chaos of the two-well Duf ng system is an im-
portant subject of research in engineering  eld, related to
the elimination of the chaotic vibration in the mechanical
systems. As the preceding results, the stabilization of the
chaos in the magnetoelastic beam system was experimen-
tally achieved [7]. The feature of the phase propagation
of the control signal was discussed in Ref. [16]. Here we
clarify the bifurcation and origin of the nontarget orbits ob-
tained as steady states in the controlled system. We dis-
cuss the remain of the global chaotic dynamics based on
the presence of nontarget orbits.

2. Two-well Duffing System under Time Delayed Feed-
back Control

The two-well Duf ng system is a mathematical model
describing the  rst-mode vibration in the magnetoelastic
beam system under sinusoidal forcing [19]. The two-well
Duf ng system is here controlled by the signal u(t):

{
ẋ(t) = y(t)
ẏ(t) = −δy(t) + x(t) − x(t)3 + A cos ωt + u(t),

(1)
where x(t) and y(t) denote the displacement and velocity
of the two-well Duf ng system, respectively. The control
signal u(t) is generated from the difference signal between
the current output signal and past one. With measuring the
velocity y(t) as a output signal, the u(t) is here obtained as
follows:

u(t) = K[y(t − τ) − y(t)], (2)
where K implies the feedback gain. The τ denotes the time
delay, which is adjusted to the period of the target unsta-
ble periodic orbits embedded in the chaotic attractor. Once
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Figure 1: Unstable period-2π orbits embedded in chaotic
attractor. 1I′ and 1I are target orbits. 1D cannot
be stabilized due to odd number condition.

control turns on, the control signal converges to null, as the
system is stabilized to one of the target orbits. As a re-
sult of the convergence, the controlled system degenerates
from an in nite dimensional system with time delay to the
original two dimensional system.

The parameter of the original system is here  x ed at
(δ, A, ω) = (0.3, 0.34, 1.0), where the system generates
the chaotic attractor [20]. δ denotes the damping coef -
cient. A represents the forcing amplitude and ω the fre-
quency. The dynamics under ω = 1.0 was summarized
in [20]. τ is adjusted to 2π for stabilizing two symmet-
ric inversely unstable periodic orbits with period-2π, which
are shown by 1I and 1I′ in Fig. 1. One can easily con rm
that the control signal stabilizes these orbits under certain
amplitude of the feedback gain. The target orbits are here
denoted by 1S and 1S′, if they gain the stability under the
control input. We note that the chaotic attractor has the
other period-2π orbit, which is a directly unstable periodic
orbit denoted by 1D in Fig. 1. However, the orbit cannot
be stabilized by the control method due to the odd number
condition.

3. Coexisting Orbits

3.1. Convergence to Coexisting Orbits
Against the purpose of controlling chaos, the conver-

gence to nontarget orbits unexpectedly occurs in the con-
trolled Duf ng systems [17]. We here introduce the con-
vergence characteristics shown in Fig. 2. The conver-
gence characteristics in Fig. 2(a) was numerically deter-
mined with the feedback gain shown by vertical axis and
the onset time of control by horizontal axis. The shift of
the onset time of control varies the initial condition of the
controlled system because of the chaotic behavior before
control turns on. The classi cation of tones is shown in
Fig. 2(b). The classi cation does not distinguish the states
with the same period for simplicity.

In Fig. 2, there is a dominant region where the state
converges to the target period-τ orbits. However, nontar-
get orbits are also obtained as steady states, depending on
the initial condition in function space. For example, one
clearly observes the convergence to the coexisting period-
3τ orbits at K ≈ 0.935 or the period-6τ orbits within
0.9 . K . 0.93. These nontarget orbits coexist with the
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Figure 2: Convergence characteristics [17]

target orbits under the control input. The convergence to
the coexisting orbits implies the failure of the control from
the goal of controlling chaos.

3.2. Bifurcation of Coexisting Orbits

This section gives an overview for the changes of the dy-
namical properties of the coexisting orbits. The bifurcation
of the coexisting orbits is illustrated using one parameter
bifurcation diagram provided by the successive change of
the feedback gain.

Figure 3(a) shows a bifurcation diagram for a coexist-
ing period-3τ orbit. The bifurcation diagram is shown by
black points, which indicate stroboscopic observation of
displacement x with period-τ . The diagram is obtained
by monotonous increase and decrease of the feedback gain
with sweeping from K = 0.935, at which the coexisting
orbit is obtained as a steady state. The stability of the coex-
isting orbits is governed by the moduli of its characteristic
multipliers.

3.2.1. Annihilation by Saddle-Node Bifurcation
The coexisting orbit disappears at the upper limit of the

stability range. This disappearance is governed by the
saddle-node bifurcation with another unstable periodic or-
bit which makes a pair to the stable coexisting orbit. It is
con rmed that a pair of characteristic multipliers reaches
unity at the bifurcation point, shown in Fig.3(b). The pair
of the multipliers annihilates on the unit circle after each
multiplier reaches at unity from inside and outside of the
unit circle, respectively. Though the orbits have an in -
nite number of multipliers because of the extension from
two dimension to in nite dimension, we here call the sta-
ble orbit node and corresponding unstable one saddle. Af-
ter the node and saddle coalesce and annihilate, both orbits
no longer exist under the control input.
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Figure 3: Bifurcation of coexisting period-3τ orbit

3.2.2. Loss of Stability by Period-Doubling Bifurcation
At the lower limit of the stability range, the node loses

the stability and then bifurcates to a period-6τ orbit under
the period-doubling bifurcation. In Fig. 3(a), we can see
that each of three branches originating from the saddle-
node bifurcation point generates a pair of branches for
the decrease of the feedback gain. One of the charac-
teristic multipliers leaves unit circle across −1, as shown
in Fig. 3(c). The continuous decrease of the feedback
gain make period-doubling bifurcation successively occur,
as shown in Fig. 3(a). It yields period-12τ , period-24τ
coexisting orbits. After the accumulation of the period-
doubling,  nally a coexisting chaotic attractor generated.

The generated chaotic attractor persists and coexists with
the stable target orbits if the feedback gain slightly de-
creases. However, this chaotic attractor is suddenly de-
stroyed as the feedback gain continues to decrease. Then
multiple steady states no longer present in the controlled
system until other coexisting orbits appear by the saddle-
node bifurcation at K ≈ 0.72.

3.3. Origin of Coexisting Orbits
The coexisting orbit keep unstable after the period-

doubling route to chaos and the subsequent destruction of
the generated chaotic attractor. The presence of the unsta-
ble coexisting orbits is here traced using numerical shoot-
ing methods for the periodic solutions of differential differ-
ence equations [21, 22]. Figure 4 shows that the branches
of the coexisting period-3τ orbit traced from the saddle-
node bifurcation point to zero feedback gain. Black and
gray branches show the trajectory of coexisting node and
saddle, respectively.
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Figure 4: Continuation of coexisting period-3τ orbit

At the upper limit of the stability range, the branches of
the saddle and node coalesce and annihilate by the saddle-
node bifurcation, as already mentioned in Sec.3.2.1. In the
opposite side of the bifurcation point, all the branches de-
velop at K = 0. Since the controlled system degenerates
into two dimensional system at K = 0, we conclude that
the coexisting orbits originate from unstable periodic or-
bits embedded in the chaotic attractor of the uncontrolled
system. With the feedback gain approaching to zero, the
characteristic multipliers of the coexisting orbits converge
to zero except two multipliers because of the degeneration
of the controlled system. The multipliers of the node is
degenerated into (−84.1594, 0) and (-0.000095, 0). It im-
plies that the orbit  nally coincides with an inversely un-
stable period-3τ orbit in the original system. As for the
saddle, the multipliers are degenerated to (247.724, 0) and
(-0.000007, 0), showing that the orbit coincides with a di-
rectly unstable period-3τ orbit in the original system.

3.4. Relation between Existence of Coexisting Orbits
and Remain of Chaos

The existence of the coexisting orbits estimates the re-
main of the original chaotic dynamics in the controlled sys-
tem, which complicates the domain of attraction for the tar-
get orbits and causes long chaotic transient before stabiliza-
tion [18]. This is because the coexisting orbits are derived
from orbits embedded in the original chaotic attractor. The
remain of the chaotic dynamics is here associated with the
annihilation of the pair of the coexisting orbits by saddle-
node bifurcation.

Figure 5 shows the unstable manifold1 of a unstable
period-τ orbit denoted by 1D. Here the 1D is a directly un-
stable periodic orbit, which cannot be stabilized by the con-
trol method because of the odd number condition. The un-
stable manifold is in function space and here projected on
the two dimensional plane induced by stroboscopic map-
ping with period-2π. It is well known that the uncontrolled
system, which is effectively identical to the controlled sys-
tem under K = 0, exhibits chaotic behavior, as results of
the homoclinic intersection of the unstable manifold and
the stable one from the same orbit 1D [19, 20]. The global
phase structure of the controlled system is governed by the

1The unstable manifold for K > 0 may not form a manifold in the
sense of differential topology, because Eq. (1) including time delay may
not have an unique backward solution for every initial condition [23, 24].
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Figure 5: Unstable manifold of 1D at K = 1.0. The unstable
manifold is projected from function space to the
two dimensional plane which is obtained by stro-
boscopic observation with period-2π.

presence of 1D, since the position and dynamical properties
of the 1D are kept under the control.

Note that the coexisting period-3τ orbits originate from
the one embedded in the original chaotic attractor. There-
fore, the annihilation of the orbits implies the disappear-
ance of the original chaotic invariant set produced by the
homoclinic intersection. In fact, one can easily con rm that
the unstable manifold becomes a completely simple curve,
as shown in Fig. 5, once the feedback gain is increased to
1.0 at which no coexisting orbits exists in the controlled
system and thereby the homoclinic intersection ravels un-
der the effect of the control signal. This result shows that
the annihilation of the coexisting orbits gives a criterion for
the disappearance of the original chaotic dynamics, which
is possibly left under the small amplitude of the feedback
gain.

4. Concluding Remarks

In this paper, multiple steady states have been discussed
in the two-well Duf ng system under time delayed feed-
back control. The multiple steady states occurs in the con-
trolled system with the stabilization of the nontarget un-
stable periodic orbits originally embedded in the chaotic
attractor. We showed that the annihilation of the coexist-
ing orbits by saddle-node bifurcation indicates the disap-
pearance of the original chaotic dynamics in the controlled
system.
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