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Abstract—This paper proposes homogeneous neural
networks (HNNs). They are new associative memory sys-
tems that realize shift-invariant properties, that is, they can
associate not only the memorized pattern but also its shifted
ones. The transition property of HNNs is analyzed by the
statistical method. We show that autocorrelation model of
HNNs cannot memorize over the number, (m

k)
2m log m , of pat-

terns, where m is the number of neurons and k is the order
of connections.

1. Introduction

Many studies have been done with neural networks,
which may be mutual connected, multi-layered and self-
organized models. The models have been applied to
various applications such as pattern recognition, associa-
tive memory and combinatorial optimization problems[1]-
[3]. Associative memory is one of the well-studied fields
of neural networks. Many associative memory models
processing static and sequential patterns have been stud-
ied such as autocorrelation associative memory [4]-[17].
Specifically, higher order neural networks are known as
a generalized model whose potential is represented as
the weighted sum of products for input variables and are
more effective in associative memory than the conventional
model. However, when the pattern is memorized in the
conventional associative memory models, its shifted pat-
terns are not recalled. In order to perform it, neural net-
works with homogeneous structure are desired to propose
like cellular automata[18].

In this paper, we propose homogeneous neural networks
(HNNs), that is, each neuron of them has the identical
weights. It is shown that HNNs are possible to perform
associative memory, but the condition that k ≥ 2 is needed.
Further, we show that autocorrelation HNNs cannot mem-

orize over the number, (m
k)

2m log m , of patterns.

2. Higher order NNs and associative memory

Each neuron has m inputs. The state of the i-th neu-
ron, the output, is represented by a function f of a po-
tential ui. The potential ui increases in proportion to the
weighted sum

∑
[Lk] wi,[Lk]xl1 · · · xlk of all combinations of

products of k pieces of input variables x j, 1 ≤ j ≤ m
and a threshold θi, where [Lk] = l1 · · · lk and

∑
[Lk] is de-

fined as
∑m−k+1

l1=1
∑m−k+2

l2=l1+1 · · ·
∑m

lk=lk−1+1 to exclude the over-
lapping of variables. Then, the output of the i-th neuron,
zi, is determined by ui =

∑r
k=1

∑
[Lk ] wi,[Lk]xl1 · · · xlk − θi and

zi = f (ui). The neural element is called a higher order neu-
ron with the order r. In this paper, we will consider higher
order neurons with only the order k. And threshold val-
ues θi are taken to 0. Then, the potential ui is as follows:
ui =

∑
[Lk] wi,[Lk]xl1 · · · xlk . When k = 1, the potential is

represented as follows: ui =
∑m

l1=1 wi,l1 xl1 . P pairs of mem-
ory patterns {X (s), Z(s)} for s = 1, · · · , P are memorized in
the networks, where X (s) and Z(s) are m and n dimensional
vectors, respectively, as follows: X (s) = (x(s)

1 , · · · , x(s)
m )T ,

Z(s) = (z(s)
1 , · · · , z(s)

n )T , where T represents the transposition
of a vector and each element takes 1 or −1.

We consider a two-layered network consisting of the in-
put layer and the output layer as shown in Fig.1. In the
conventional neural networks, the weight wi j is determined
by the correlation learning as follows[14]:

wi,[Lk ] =
1(
m
k

) P∑
s=1

z(s)
i x(s)

l1
· · · x(s)

lk
(1)

When the memorized pattern X (s) or one with
the noise X(s)′ is input in this case, the correspond-
ing pattern Z (s) is output (See Fig.2). However, when
the shifted pattern shift(X (s), α) of X(s) is input, the
pattern Z(s) is not recalled, where shift(X (s), α) =

(x(s)
(1+α) mod m+1, x

(s)
(2+α) mod m+1, · · · , x(s)

(m+α) mod m+1)T for α ∈
{0, · · · ,m − 2}. Therefore, we propose a new learning
method that when the memorized X (s) or its shifted patterns
is input, the desired pattern Z (s) is recalled (Fig.3).
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Figure 1: A two-layered neural network.
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Figure 2: Associative memory.

First, the weight w is defined as follows:

w[Γk] =
1(
m
k

) m∑
j=1

P∑
s=1

z(s)
j x(s)

j+γ1
· · · x(s)

j+γk
, (2)

where [Γk] = γ1 · · · γk and γi ∈ {1, · · · , n}. The neural net-
works with the weights defined by Eq.(2) are called homo-
geneous neural networks (HNNs).
Example 1.

For k = 1, 2, the following weights are obtained:

w[Γ1] = wα = 1
m

∑
j
∑

s z(s)
j x(s)

j+α

w[Γ2] = wα,β = 1
(m

2)
∑

j
∑

s z(s)
j x(s)

j+αx
(s)
j+β,

where α, β ∈ {1, · · · , n}. �
Remark that the Eq.(2) does not include the suffix i as

compared with the Eq.(1). It means that the weights are ho-
mogeneous and do not depend on the places of the neurons.
When the r-th pattern X (r) is input, the transition property
is defined as follows:

ui =
∑
[Γk]

 1(
m
k

) ∑
j

∑
s

z(s)
j x(s)

j+γ1
· · · x(s)

j+γk


· x(r)

i+γ1
· · · x(r)

i+γk
(3)

zi = f (ui) (4)

f (u) = sgn(u) =

{
1 u > 0
−1 u ≤ 0,

(5)

where
∑
[Γk]

is defined as
m−k∑
γ1=1

m−k+1∑
γ2=γ1+1

· · · m−1∑
γk=γk−1+1

.

3. The associative ability of HNNs

This chapter describes the abilities of heteroassociative
(Z(s) � X(s)) and autoassociative (Z (s) = X(s)) memories for
HNNs. In the following, we will evaluate the probability
that each neuron outputs correctly, in other words, the out-
put of the i-th neuron is z(r)

i for an input pattern X (r). Let
r = 1 without loss of generality. It is assumed that each
element of memory patterns, x (s)

j and z(s)
i , takes the value

1 or -1 with a probability 1
2 , independently to each other.

Further, it is assumed that m and P are sufficiently large.

Key pattern 1

(a) Recalling for key pattern 1.

(b) Recalling for key pattern 2.

Key pattern 2

Figure 3: The recalling in the proposed model.

3.1. The ability of heteroassociative memory

The potential ui for an input pattern X (1) is given by

ui =
∑
[Γk]

w[Γk]x
(1)
i+γ1
· · · x(1)

i+γk
= z(1)

i +

∑∑
j�i or s�1

z(s)
i (

∑
[Γk]

x(s)
j+γ1

x(1)
i+γ1
· · · x(s)

j+γk
x(1)

i+γk
)(

m
k

) . (6)

Let h and h1 be defined as follows:

h1 =
∑
[Γk]

x(s)
j+γ1

x(1)
i+γ1
· · · x(s)

j+γk
x(1)

i+γk
, (7)

h =

∑∑
j�i or s�1z(s)

i h1(
m
k

) . (8)

The term h is called the interference one. Let the expecta-
tion of h1 be denoted by E[h1]. Then, we have

E[h1] = E[
∑
[Γk]

x(s)
j+γ1

x(1)
i+γ1
· · · x(s)

j+γk
x(1)

i+γk
]

=
∑
[Γk]

E[x(s)
j+γ1

x(1)
i+γ1
· · · x(s)

j+γk
x(1)

i+γk
]

= 0, (9)

because of Prob(x(s)
j = ±1) = 1

2 . Let the variance of h1 be
denoted by Var[h1]. We have

Var[h1] = E


∑

[Γk]

x(s)
j+γ1

x(1)
i+γ1
· · · x(s)

j+γk
x(1)

i+γk


2

=

(
m
k

)
+

∑
[Γk]

∑
[Γ′k�Γk]

E[(x(s)
j+γ1

x(1)
i+γ1
· · · x(s)

j+γk
x(1)

i+γk
)

· (x(s)
j+γ′1

x(1)
i+γ′1
· · · x(s)

j+γ′k
x(1)

i+γ′k
)] =

(
m
k

)
, (10)

where
∑

[Γk]
∑

[Γ′k�Γk] means the sum for all combinations of
γ1, · · · , γk and γ′1, · · · , γ′k such that γ′α � γα for at least one
α. In the Eq.(8), z(s)

i is 1 or -1 independently of h1.
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Table 1: Associative probabilities by HNNs with the order
k: m = 100, P = 1505.

k 2 3 4 5
mP(

m
k

) 30.4 0.931 0.038 0.002

Prob 0.572 0.85 ≈ 1 1

Table 2: Capacity of associative memory by HNNs with
the order k: Prob> 0.99,m = 100.

k 2 3 4 5

P 9 292 7,059 135,520

Hence, by the Central Limit Theorem, h is regarded as
the normal distribution with mean 0 and variance m(P−1)

(m
k)

or
(m−1)P

(m
k)
≈ mP

(m
k)

. When z(1)
i = 1, the output of the i-th neuron is

correct for ui > 0, and when z(1)
i = −1, the output is correct

for ui ≤ 0. Therefore, the probability that each neuron
outputs correctly, is given by

Prob(zi = z(1)
i ) = Prob(h ≤ 1) = Prob(h > −1)

= Φ


√ (

m
k

)
mP

 , (11)

where Φ(u) is the error integral function defined by Φ(u) =
1√
2π

∫ u

−∞ exp(− s2

2 )ds. By the Eq.(11), the number of mem-
ory patterns memorized, is in proportion to the total num-
ber of weights. The Fig.4 shows theoretical and exper-
imental results. In the case of heteroassociative mem-
ory, the results in numerical simulations are in fairly gen-
eral agreement with the theoretical ones. If k = 1, then

Prob(zi = z(1)
i ) = Φ(

√
1
P ). It means that it is impossible to

perform associative memory by using HNNs for k = 1.
Let us show some properties using the Eq.(11).

Example 2.
In the case where m = 100 and P = 1505, the probabili-

ties of the Eq.(11) are shown in Table 1. �
Example 3.

The numbers of memory patterns satisfying Prob(z i =

z(1)
i ) > 0.99 at m = 100, are shown in Table 2. �

3.2. Autoassociative ability

In this section, we will consider autoassociative memory,
the case where Z(s) = X(s). Let us evaluate Prob(zi = x(1)

i )
in the following. The weight w[Γk] is determined by

w[Γk ] =
1(
m
k

) m∑
j=1

P∑
s=1

x(s)
j x(s)

j+γ1
· · · x(s)

j+γk
. (12)
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Figure 4: Associative probabilities by HNNs with the order
k (theoretical and experimental results).

Table 3: Memory capacity of HNNs.
k

2 3 4

100 5 175 4,257
m 500 20 3,332 414,029

1,000 36 12,027 2,997,871

The potential ui for an input pattern X (1) is given by

ui =
∑
[Γk]

w[Γk]x
(1)
i+γ1
· · · x(1)

i+γk
= x(1)

i +

x(1)
i(
m
k

) ∑
j�i

∑
[Γk]

x(1)
j x(1)

j+γ1
· · · x(1)

j+γk−1
x(1)

i+γ1
· · · x(1)

i+γk
+

1(
m
k

) ∑
s�1

∑
j

∑
[Γk]

x(s)
j x(s)

j+γ1
· · · x(s)

j+γk
x(1)

i+γ1
· · · x(1)

i+γk
, (13)

Using the same method as 3.1, we can calculate the ex-
pectations and the variances of the second and third terms,
which are regarded as the normal distribution. Further, we
can calculate the covariance of the second and third terms.
By their results, the interference term is regarded as the
normal distribution.

Therefore, we have

Prob(zi = x(1)
i ) = Φ


√ (

m
k

)
mP

 . (14)

As a result, it is shown that the result of autoassociative
memory is the same as one of heteroassociative memory.
Fig.4 shows theoretical and experimental results. The re-
sults in numerical simulations are in fairly general agree-
ment with the theoretical ones.

Autoassociative memory is used as dynamical systems.
There is some definition of memory capacity of autoasso-
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ciative memory. In this paper, we define the memory ca-
pacity Pc as the maximum number of memory patterns that
each memory pattern is an equilibrium state in the network
with over a probability pe which is close to 1. In other
words, memory capacity Pc is defined as the maximum
number of memory patterns P which satisfies the follow-
ing equation: (

Prob(zi = x(1)
i )

)m ≥ pe (15)

Eq.(15) can be approximated as

Prob(zi = x(1)
i ) ≥ 1 − 1 − pe

m
. (16)

So, we have

Φ


√ (

m
k

)
mPc

 = 1 − 1 − pe

m
. (17)

The left hand of Eq.(17) can be approximated as

Φ


√ (

m
k

)
mPc

 = 1 − 1√
2π

exp(−
(
m
k

)
2mPc

)/

(
m
k

)
2mPc

, (18)

because, when m → ∞, then mPc

(m
k)
→ 0. By using assump-

tion of m, which is sufficiently large, Eq.(17) can be ex-
panded as follows: (

m
k

)
2mPc

≈ log m. (19)

Therefore, HNNs cannot memorized over the following P c:

Pc =

(
m
k

)
2m log m

. (20)

The result shows the memory capacity of autoassociative
memory for HNNs.
Example 4.

Let us compute Pc for m and k. The results are shown in
Table 3. �

4. Conclusion

This paper proposed homogeneous neural networks and
analyzed the associative ability of them. HNNs were pos-
sible to perform associative memory, but the condition that
k ≥ 2 was needed. Further, the transition property of HNNs
was analyzed. It was shown that the memory capacity of

autocorrelation model is (m
k)

2m log m .
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