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Abstract — In this paper, we investigate various bifurcation 
and related dynamics of certain periodic attractors in a three-
coupled oscillator system with hard type nonlinearity. The 
periodic attractors exist for comparatively large ε (=parameter 
showing the degree of nonlinearity), and they disappear via 
saddle-node (S-N) bifurcation when ε becomes small.  There 
exist a heteroclinic and a homoclinic cycle near the bifurcation 
parameter value for some cases.  In such cases, a quasi-periodic 
attractor appears generally after the S-N bifurcation.  In 
particular, it presents intermittent phenomenon just after the S-N 
bifurcation.  We clarify the existence of the heteroclinic and 
homoclinic cycles by drawing unstable manifold of saddles on 
Poincare section, and demonstrate the intermittent phenomenon 
by simulation. 
 

1. Introduction 
 
In this paper, we investigate various dynamics related to 

global bifurcation of three coupled oscillators with hard type 
nonlinearity.  At first, we investigate the symmetric case where 
each oscillator is the same, and next the asymmetric case where 
it is not the same, and compare the difference between them.  
For the symmetric case, two symmetric periodic solutions exist, 
which present the S-N bifurcation at the same value of ε. The 
saddle and node pairs associated with these two symmetric 
solutions are connected by unstable manifolds (UM’s) of 
saddles for ε near the bifurcation value to form a heteroclinic 
cycle at the bifurcation value.  Therefore, a switching 
phenomenon between two periodic solutions can be observed.  
This is the ultimate form of a quasi-periodic oscillation. In 
addition to this, there is another periodic solution which also 
presents the S-N bifurcation.  One branch of UM’s of this 
saddle-node pair leads to zero. Therefore, this solution 
converges to zero after S-N bifurcation. 

Next, we investigate the asymmetric case by changing third 
oscillator’s intrinsic frequency. There are no symmetric 
solutions, and the bifurcation values of three periodic solutions 
are not the same, and no heteroclinic cycle exists (if the 
asymmetry exceeds some critical value). In such a case the third 
solution which bifurcates to zero for the symmetric case forms a 
cycle connecting a single S-N pair.  This becomes a torus after 
S-N bifurcation.  From these facts, we notice that symmetric 
nature is kept for slightly asymmetric system; namely, the 
heteroclinic cycle and the resulting switching solution can be 
observed, but that the heteroclinic cycle breaks when the 
asymmetry increases, and the resulting dynamics is a torus 

based on one single S-N pair.  We elucidate this fact by drawing 
unstable manifolds in five dimensional Poincare section. 

 
 
 

2. Fundamental  equation  and  the  switching  phenomenon 
 

The three inductively-coupled oscillators with hard type 
nonlinearity can be written by the following 6th-order 
autonomous system: 
 
 
 
 
 

     (1) 
 
 
 

 
 

 where 1x , 3x and 5x  denotes the normalized output voltage of 
the first, second, and third oscillators , 2x , 4x  and 6x  are their 
derivatives, respectively. The parameter ε>0 shows the degree of 
nonlinearity. The parameter 0<α<1 is a coupling factor; namely, 
α=1 means maximum coupling, and α=0 means no coupling.The 
parameter β controls amplitude of oscillation. The parameter 

2
2k presents the frequency deviation of the first and second 

oscillators , and 2
3k presents that of the first and thirdoscillators. 

Namely, 2 2
2 3( ) 1=k k  means that the first and the second (third) 

oscillators has an equal intrinsic frequency, and 2 2
2 3( ) 1≠k k means 

that they have some frequency deviation. 
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3. Formation and destruction of the heteroclinic cycle 
 

Taking a Poincare section at  2 0x =  in (1), flows in six 
dimensional phase space become discrete maps in five 
dimensional phase space 1, 3, 4, 5, 6( )x x x x x . Equation (1) is 
invariant by replacing  1x  by 5x  and 2x  by 6x  for 2

2k and 
2

3 1k = , therefore if  there exists a  periodic solution P : 

1 2 3 4 5 6( ( ), ( ), ( ), ( ), ( ), ( ))x t x t x t x t x t x t ,  
then there exists a symmetric periodic solution 

'P : 5 6 3 4 1 2( ( ), ( ), ( ), ( ), ( ), ( ))x t x t x t x t x t x t  by the above 
replacement. Fixing α=0.11 and β =3.1, we will present the 
result of 2 2

2 3 1= =k k , namely the symmetric system. Fig.1 
presents a bifurcation diagram of three periodic solutions for the 
symmetric case. The upper, middle, and bottom S-N bifurcation 
curves correspond to the periodic solutions in Figs.2(a),(b) and 
(c), respectively. Periodic solutions in Figs.2(a) and (c) are 
symmetric and they form a heteroclinic cycle which bifurcates 
to a quasi-periodic solution. Right after the S-N bifurcation, the 
quasi-periodic oscillation takes the form of intermittent or 
switching oscillation. The periodic solution in Fig.2(b) ceases to 
zero after S-N bifurcation. The upper and lower S-N 
bifurcations in Fig.1 occur at  the same value of εc =0.374, but 
the middle one occurs at εc=0.337. Other than these attractors, 
there exist the same-phase and the reverse phase periodic 
solutions. 
     Figure 3 presents the location of nodes and saddles with their 
UM’s obtained by computer simulation for three typical values 
of ε for the symmetric case. Figure 4 presents a schematic 
diagram of Fig.3. For ε >0.374 there exist stable nodes 
N1,N2,N3 and zero. Further, there is a heteroclinic cycle 
connecting N1 and N3 which bifurcates to be a torus for ε
<0.374. The flow stays around the locus of  N1 and N3 for a 
long time and quickly move along the locus unstable manifolds 
right after the bifurcation, which looks like switching between 
two attractors. Therefore, we call such a solution the switching 
solution. For 0.337<ε<0.374 there exist stable nodes N2 and 
zero and a torus, and for ε<0.337 there exists a stable node 
zero and a torus. Figure 5 demonstrates a computer simulation 
of the switching solution. Note that mapped points are 
distributed on the UM’s. In particular they are distributed 
densely around the locus of N1 and N3. The middle solution 
associated with N2 goes to zero after the S-N bifurcation, 
because one of the unstable manifolds of S2 is connected to zero. 
The structure of nodes and saddles with their UM’s shown in 
Fig.4 is maintained at least for 2

2 1k =  and  2
31 1.029< <k . 

  Next, we will explain the bifurcation diagram for the 
asymmetric case  for 2

2 1k =  and 2
2 1.03k = . Figure 6 presents 

a bifurcation diagram of  four periodic solutions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1: Bifurcation diagram of three periodic solutions  
          for 2 2

2 3 1= =k k  0.11α =  and 3.1β =  
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(b) 
 
 
 
 

 
(c) 

 
 
 
 
 
 

(d) 
 

Fig.2 :(a),(b),(c) Three periodic attractors existing for largeε  
for the symmetric system. Parameters are as follows: 

2 2
2 3 1= =k k  0.11α = , 3.1β =  and ε=0.40 

 (d):A periodic attractor existing for  the asymmetric system. 
Parameters are as follows :                                              and  
ε=0.365. This periodic attractor exists for 
 
 
 

2 2
2 31, 1.03, 0.11, 3.1α β= = = =　　　 　k k

0.360 0.367ε< <
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     (a)ε=0.385 
 
 
 
 
 
 
 
 
 

(b) ε=0.37 
 
 
 
 
 
 
 
 

 
(c) ε=0.33 

Fig.3: Computer calculation of nodes, saddles and UM’s  
( or torus) for the symmetric case: 

2 2
2 3 1= =k k  0.11α = , 3.1β = Projection onto the 
3 4 6( , , )x x x  - space. □ : saddle  ● :  node  ○ : zero 

 
 

The upper bifurcation curve is the N1-S1 pair corresponding to 
the periodic solution in Fig.2(a). The second one is the N2-S2 
pair corresponding to the periodic solution in Fig.2(b). The 
bottom one is the N3-S3 pair corresponding to the periodic 
solution in Fig.2(c). The third one is the N4-S4 pair 
corresponding to the periodic solution in Fig.2(d), and presents 
the S-N bifurcation at εc1=0.360. This periodic solution ceases 
at εc2=0.367, but type of bifurcation is not clear so far. After all, 
bifurcation points of each solution in the asymmetric case are 
inconsistent in contrast to the symmetric case.  

Figures 7(a)-(f) show schematic diagrams showing the 
relation of nodes and saddles with their unstable manifolds for 
the asymmetric case for various values of ε. 

 
 
 

  
 
 
 
 
 
 
 
 

(a)ε>0.374 
 
  
 
 

 
 

 
 
 

(b) 0.337<ε<0.374 
 
 
 
 
 
 

 
 
 

(c) ε<0.337 
 

Fig.4: The schematic diagram of nodes, saddles 
  and UM’s for the symmetric system 

    
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5: Computer simulation of the switching solution. 

Parameters are as follows: 2 2
2 3 1= =k k  , 0.11α = , 3.1β =   

          The cross marks (×) present the Poincare mapped points    
          right after the S-N bifurcation for the switching attractor 

at ε=0.370. The UM’s shows the heteroclinic cycle 
connecting N1 and N3 at ε= 0.385. 
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Fig.6: Bifurcation diagram of four periodic solutions 

for 2 2
2 31, 1.03k k= =  0.11α =  and 3.1β =  

for the asymmetric system 
 

The reason why we do not show a real flow diagram is because 
it is too complicated to understand. Nodes N1,N2,N3 and N4 
corresponds to the periodic oscillations in Figs.2(a),(b),(c) and 
(d) respectively. For ε>0.405 there exist stable nodes N1,N2,N3 
and zero as shown in Fig.7(a). For 0.398<ε<0.405 there exist 
stable nodes N1,N2 and zero (N3 and S3 disappears via SN-
bifurcation) as shown in Fig.7(b). For 0.381<ε<0.398 there exist 
zero, N1 and a torus (N2 and S2 disappears) as shown in 
Fig.7(c). For 0.367<ε<0.381 there exist zero and a torus (N1 and 
S1 disappears ) as shown in Fig.7(d). For 0.360<ε<0.367 there 
exist zero and N4 (torus disappears) as shown in Fig.7(e). For 
ε<0.36 there exist only zero as shown in Fig.7(f). After all, by 
changing 2

3k slightly, the relationship between nodes and 
saddles with their UM’s changes greatly. This is a kind of global 
bifurcation. 
 
4. Conclusions 
 

In this paper we investigate the global bifurcation and the 
change of dynamics  in terms of εof three coupled oscillators 
with hard type nonlinearity. In particular, we compare the 
results of symmetric and asymmetric systems. Namely, for the 
symmetric system there is a heteroclinic cycle which bifurcates 
to be a torus. This torus exists for small ε . In addition, 
switching dynamics of two periodic solutions can be observed 
right after the S-N bifurcation. For the asymmetric system there 
is a homoclinic cycle which bifurcates to be a torus. However, 
the torus disappears for small ε. The dynamics is very sensitive 
to the changes of εas shown in  the schematic diagram of 
Figs.4 and 7. In the future, we will investigate for many 
combinations of 2

2k and 2
3k   

 
 
 
 
 
 
 
    

   (a) ε>0.405                          (b)  0.398<ε<0.405 
 
 
 
 
 
 
 
  
         (c)  0.381<ε<0.398                          (d)  0.367<ε<0.381 
 
 
 
 
 
 
 

 (e)  0.360<ε<0.367                             (f)  ε<0.360 
 
Fig.7 : The schematic diagram of nodes, saddles and UM’s 
            for 2

2 1k = , 2
3 1.03k =  for the asymmetric system 
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