
Transient stability and discontinuous solution
in electric power system with dc transmission:

A study with DAE system

Yoshihiko Susuki†, Takashi Hikihara†, and Hsiao-Dong Chiang‡

†Department of Electrical Engineering, Kyoto University
Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan

‡Department of Electrical and Computer Engineering, Cornell University
Ithaca, NY, 14853, The United States

Email: susuki@dove.kuee.kyoto-u.ac.jp, hikihara@kuee.kyoto-u.ac.jp, chiang@ece.cornell.edu

Abstract—This paper focuses on transient stabil-
ity of an electric power system with dc transmis-
sion. When the transient stability is numerically evalu-
ated based on a differential-algebraic equation (DAE)
system, associated trajectories become discontinuous
since constraint sets are different among correspond-
ing pre-fault, fault-on, and post-fault DAE systems. In
this paper, several discontinuous solutions are numer-
ically and analytically discussed for the DAE system.

1. Introduction

This paper addresses transient stability of an elec-
tric power system with dc transmission. DC transmis-
sion has been widely recognized as a novel technology
for future power supply networks [1, 2, 3, 4]. Tran-
sient stability of ac/dc power systems is of important
concern with their ability to reach an acceptable op-
erating condition following an event disturbance. The
transient stability is mainly analyzed based on the two
different approaches: time-domain (numerical) simula-
tion [1, 2] and dynamical system theory [5, 6] involving
energy function method [7, 1, 6]. By combing the two
approaches, we can obtain sufficient and practical in-
formation about the transient stability.

The present paper investigates discontinuous solu-
tions in a differential-algebraic equation (DAE) system
using the numerical simulation. In [5, 6] we examined
transient stability boundaries of the ac/dc power sys-
tem based on the DAE system. Our previous stud-
ies focused on geometric and topological structures of
the stability boundaries. Unfortunately, the relation
has not been clarified between the stability boundaries
and possible system trajectories relative to accidental
faults. The understanding of the relation is inevitable
in order to apply the obtained results in [5, 6] to prac-
tical situations and reveal the transient stability. Here,
to clarify the relation, we consider particular discontin-
uous solutions caused by accidental faults in the ac/dc
system; the solutions have a potential to provide with
us a clue about the relation. This paper shows several
discontinuous solutions of the DAE system and evalu-
ates them via the singular perturbation technique.
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Figure 1 System model of electric power system with
dc transmission

2. Differential-algebraic equation system

Figure 1 shows the system model of an electric power
system with dc transmission [8]. In [6] we derive the
following DAE system as a mathematical model for
the transient stability analysis:
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M
dx

dt
= f(x,y), 0 = g(x,y). (1)

x , (v′
q, δ,∆ω, Idc)

T ∈ X and y , (θr, Vr, ϕr)
T ∈

Y , and M denotes the positive-definite matrix: M ,
diag(T ′

d0/(Ld − L′
d), 1, 2H,Ldc). In (1) variables and

parameters are normalized with the well known per
unit system. Their physical meaning is given in [6].

3. Singularly perturbed and boundary-layer
systems

Let us consider the associated singularly perturbed
(SP) system as follows:

M
dx

dt
= f(x,y), ε

dy

dt
= g(x,y), (2)

where ε is a small positive parameter. Let L ,
{(x,y) ∈ X ×Y ; g(x,y) = 0} be the constraint set of
the DAE system. The dynamics of the SP system (2)
have the similarity to those of the DAE system (1) in
a stable component Γs ⊂ L: Γs is a connected set such
that for any point in Γs the Jacobian Dyg has no eigen-
value with positive and zero real parts. In addition,
applying the variable transformation s , ε/t to the
SP system (2) and setting ε = 0 freeze the variables at
x = x∗, and derive the following boundary-layer (BL)
system:

dy

ds
= g(x∗,y). (3)

The set of equilibrium points (EPs) in the BL system
corresponds to L, and the set of asymptotically stable
EPs also the union of stable components. This fact
is directly used to justify the discontinuous solutions
theoretically as discussed below.

4. Transient stability and discontinuous solu-
tions

4.1. Faults setting

Two fault cases that we now adopt are as follows:
one is a three-phase fault in the ac transmission line,
and the generator operates as a result onto the dc link

Table 1 Parameters setting

Ld 1.79 Lq 1.77 L′
d 0.34

T ′
d0/(120π s−1) 6.3 s V0 1.7 pm 0.5

H/(120π s−1) 0.89 s D 0.05 L∞ 0.883

V∞ 1.0 Ldc 4.2 Rdc 0.014

Vi 1.0 KV 1.19 KI 1.19

Xc 0.12 Gα 30.0 Idc(ref) 1.0

only during the sustained fault. The other is a three-
phase fault at the infinite bus, and thereby the infinite
bus voltage is fixed at zero in the fault duration. Sup-
pose that the system is at a known asymptotically sta-
ble EP at t = 0−, the fault duration is confined to the
time [0+, t−cl ], and the fault is cleared at a time t = tcl.
It is assumed for simplicity that the post-fault DAE
system is identical to the pre-fault DAE one. The
above two cases are now mathematically formulated
in the DAE system (1) for t ∈ [0+, t−cl ]: 1/L∞ = 0
(case-1) and V∞ = 0 (case-2), respectively.

Two constraint sets are apparently different between
the pre-fault (or post-fault) and fault-on DAE systems.
The difference generates discontinuous solutions of the
DAE system (1) at t = 0 and tcl; they are called ex-
ternal jumps [9, 10]. Jump behaviors or discontinuous
solutions have been discussed for constrained dynami-
cal systems in [11, 12, 9]. The previous works [11, 12]
define general discontinuous solutions based on associ-
ated BL systems. In particular, when the BL systems
are gradient [13], the discontinuous solutions are sim-
ply characterized based on the orbit structures of the
BL systems. In the following, we use some previous
results in [9, 10] to validate numerical discontinuous
solutions (external jumps) in the DAE system (1).

The discontinuous solutions have bean reported
for power system transient analysis using structure-
preserving models [9, 10]. Practical power systems do
not hold such discontinuous states, and they therefore
originate from modeling over-abstraction. However,
since abstraction is inevitable for analyzing massively
complex power networks, understanding how the solu-
tions affect the transient stability is essential, e.g., for
the development of controlling UEP method for the
power system analysis [10].

4.2. Numerical simulations

Numerical simulations are performed for the DAE
system (1). The parameters setting are identical to
Tab. 1. They are obtained for the practical system
[8]. We here adopt the 3rd-stage Radau-IIA implicit
Runge-Kutta method [14] to integrate the DAE sys-
tem numerically. Since the numerical scheme is one-
step type, we possibly obtain numerical discontinuous
solutions although they do not generally hold unique-
ness properties.

Figure 2 shows the transient behavior of ∆ω, Vr,
and active power with setting the case-1 fault at
tcl/(120π s−1) = 140 ms. In the figures, 2 denotes
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Figure 2 Discontinuous solution of the DAE system
with case-1 fault setting. The fault-clearing
time tcl/(120π s−1) is fixed at 140 ms.

the initial condition, which coincides with a pre-fault
steady state, and • the state at each t = 0+, t−cl ,

or t+cl. The solution in the figure converges to a
post-fault asymptotically stable EP. In Fig. 2, ∆ω
in x is continuous, while Vr in y is discontinuous at
t/(120π s−1) = 0 s and 140 ms. This property is dis-
cussed in the next subsection. Fig. 2 also shows the
active power swing in the system. During the fault
duration, the active power output of the infinite bus is
zero, and the generator output is therefore identical to
the dc power input. Since the generator output dur-
ing the fault duration is greater than the mechanical
power input pm = 0.5, the generator is de-accelerated
as shown in Fig. 2. After the fault is cleared at t = tcl,
both generator and infinite bus output show oscilla-
tory motions and converge to the values at the steady
state.

The case-2 fault solution is shown in Fig. 3.
The solution here converges to a singular surface
S of the fault-on DAE system: S , {(x,y) ∈
L; det(Dyg)(x,y) = 0}. The solution which reaches S
is also possibly discontinuous; the discontinuity here
is qualitatively different from external jumps [9, 10].
This result implies an application limit of the DAE sys-
tem (1) for the transient stability analysis. It is stated
in [15] that the transient stability is determined by the
dynamics of the post-fault DAE system. The transient
behavior in Fig. 3 therefore suggests that the present
DAE system (1) is not relevant to clarifying the tran-
sient stability problem relative to the case-1 fault. To
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Figure 3 Discontinuous solution of the DAE system
with case-2 fault setting
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Figure 4 Projected trajectories of the DAE and SP
systems with case-1 fault setting onto θr−Vr

plane. The perturbation parameter ε is set
at 0.5. The solid line denotes the trajectory
of the DAE system (1) and the dotted line
that of the SP system (2).

overcome the limitation, we need to model the tran-
sient dynamics in detail with taking some equipments
of the ac/dc system: AVRs, shunt capacitors at con-
verter stations, and so on.

4.3. Discontinuous solution and boundary
layer systems

Next we discuss the discontinuous solution of the
case-1 fault setting through the associated SP system
(2). As discussed before, the SP system plays a key
role in validating numerical simulations for the DAE
system (1). Fig. 4 shows the projected trajectories
of the DAE and associated SP systems onto θr − Vr

plane. The perturbation parameter ε is set at 0.5. The
solid line denotes the trajectory of the DAE system
(1) and the dotted line that of the SP system (2). The
figure implies that the trajectory of the SP system (2)
precisely traces the discontinuous solution of the DAE
system (1).

The discontinuous solution of the case-1 fault is now
analytically justified based on the BL system. Each
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point in a stable component Γs becomes an asymptot-
ically stable EP of the following post-fault BL system
at t = tcl:
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−
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KV eVr cos α∗ −
3

π
XcI

∗
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)

I∗dc,
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q , δ∗, θr, Vr)

−

√

K2
I e2VrI∗2dc −

(

KV eVr cosα∗ −
3

π
XcI∗dc

)2

I∗2dc ,

(4)

where x(t+cl) , (v′∗
q , δ∗,∆ω∗, I∗dc)

T, and we assume

that I∗dc > 0 and KIe
VrI∗dc sinϕr > 0; this is rele-

vant to the transient stability analysis. From [12, 9]
we here state that if the DAE system (1) admits of the
discontinuous solution at t = tcl, then the trajectory
of the BL system (4) with the initial condition y(t−cl)

converges to the point y(t+cl) in the stable component

Γs satisfying x(t−cl) = x(t+cl); the coincident property

holds in Fig. 2. This follows that the point y(t−cl) is

on a stable manifold of the stable EP y(t+cl) in the BL
system (4). Fig. 5 definitely describes the trajectories
of the pre- and post-BL systems and the projected dis-
continuous solution of the DAE system. In the figure,
all trajectories of the BL systems converge to asymp-
totically stable EPs of the BL systems, and these EPs
coincide with the starting points of the discontinuous
solution at t = 0+ and t+cl. This implies that our nu-
merical discontinuous solution is valid in the analytical
sense.
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