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Abstract- In this paper we deal with various global 

bifurcations and related change of dynamics including the 
transitional phenomenon in asymmetrical two-coupled 
oscillators with hard type nonlinearity. There exist 
periodic attractors for comparatively large ε  (= a 
parameter showing the degree of nonlinearity), but for 
small ε , they disappear because of saddle-node 
bifurcation. We draw nodes and saddles with their 
unstable manifold near to the bifurcation point on 
Poincare section for various values of 2k  (= a parameter 
showing the deviation between two oscillators’ intrinsic 
frequencies). We found that the unstable manifold 
changes in various ways with variation of parameters 
around the bifurcation point, and therefore the associated 
dynamics changes drastically. 
 
1. Introduction 
 

In [1][2], we focused our attention on the transitional 
phenomenon of a switching attractor in identical (hence 
symmetric) two-coupled oscillator systems with hard type 
nonlinearity. We clarified that the key mechanism existed 
in a heteroclinic cycle connecting two degenerate saddles 
and nodes which was formed at the bifurcation point. In 
this paper, we deal with various dynamics including 
transitional phenomenon in asymmetrical two-coupled 
oscillators with hard type nonlinearity. In particular, we 
investigate how the heteroclinic cycle in symmetrical 
system disappears and new connections of nodes and 
saddles appear when the system becomes asymmetric. 
Accordingly, we draw various diagrams of nodes, saddles 
and their unstable manifolds (UM’s) in terms of frequency 
deviation 2k  in order to observe the change of behavior of 
UM’s with the value of 2k . It is very natural and realistic 
to assume that each oscillator has a slightly different 
intrinsic oscillation frequency, because inevitable errors 
between two oscillators are left in practice. We focus our 
notice on the connection between nodes and saddles by 
UM’s to elucidate the whole dynamics for such an 
asymmetric system. As a result, it becomes clear that the 
system presents various connections associated with the 
degree of frequency deviation. 
 
2. Fundamental equation and the switching 

phenomenon 
 

The asymmetric two inductively-coupled oscillators 
with hard type nonlinearity can be written by the following 
4th-order autonomous system: 
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where 1x  denotes the normalized output voltage of one 
oscillator, 2x  is its derivative, and where 3x  denotes the 
normalized output voltage of the other oscillator, 4x  is its 
derivative. The parameter 0>ε  shows the degree of 
nonlinearity. The parameter 10 <<α  is a coupling 
factor; namely, 1=α  means maximum coupling, and 

0=α  means no coupling. The parameter β  controls 
amplitude of oscillation. The parameter 2k  presents the 
frequency deviation of two oscillators; namely, 12 =k  
means that two oscillators has an equal intrinsic frequency, 
and 12 ≠k  means that they have some frequency 
deviation. This system has three attractors in general for 
small ε ; namely, the same-phase (periodic) attractor, the 
reverse-phase (periodic) attractor, and the double-mode 
(quasi-periodic) attractor. When ε  becomes large, the 
double-mode attractor becomes two periodic attractors as 
shown later. In particular, for ε  smaller than, but close to 
the bifurcation point, one can observe the switching 
phenomenon of these attractors[1] which is the ultimate 
form of the double-mode attractor. The reason for this 
switching solution is a formation of a heteroclinic cycle 
associated with the degenerate saddles. In this paper, we 
investigate global bifurcation of this heteroclinic cycle for 

12 ≠k . 
 
3. Global bifurcation of the heteroclinic cycle 
 

Taking a Poincare section at 02 =x  in (1), flows in four 
dimensional phase space become discrete maps in three 
dimensional phase space ( 1x , 3x , 4x ). First of all, we will 

present the result of 12 =k  for review. Figure 1 presents a 
bifurcation diagram for 0.12 =k , 1.0=α  and 1.3=β  of 
two periodic solutions which bifurcate to be a 
quasi-periodic oscillation for small ε . Equation (1) is 
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invariant by replacing 1x  by 3x  and 2x  by 4x  for 12 =k , 
therefore, if there exists a periodic solution P: 
( )(1 tx , )(2 tx , )(3 tx , )(4 tx ), then there exists another 

periodic solution P’: ( )(3 tx , )(4 tx , )(1 tx , )(2 tx ) by the above 
replacement. This means that two saddle-node bifurcations 
occur at the same value of 449.0=ε in Fig.11. In this case, 
the same-phase and the reverse-phase periodic solutions 
are stable, and no bifurcation occurs for 6.00 << ε , 
therefore they are omitted. Figure 2 shows nodes 
(corresponding to the stable periodic attractors) and the 
associated saddles, of which UM’s connect two nodes and 
saddles for 449.0=ε . Note a cycle connecting two (almost 
degenerate) saddles, which is approximately a heteroclinic 
cycle. When ε  becomes a bit smaller, the nodes and the 
saddles disappear but their “locus” exist. The same is said 
for the UM’s. Therefore, the flow for example, for 

447.0=ε  behaves as follows. 1) Flow stays around the 
locus of one node for a long time, and 2) quickly moves 
along the locus of UM, and 3) it stays again around the 
locus of the other node for a long time, and 4) moves 
quickly along the locus of UM, vice versa. We call this the 
switching phenomenon. This flow behavior is verified by 
the Poincare mapped points of the switching attractor in 
Fig.2. The triangular mark and the square mark show the 
reverse and the same phase periodic attractors, respectively. 
In this case, they have no relation to the switching 
solution. 

Figure 3 shows the bifurcation diagram of the periodic 
solution for the asymmetric case for 033.12 =k , 1.0=α  
and 1.3=β . The S-N bifurcation point for the upper 
periodic solution is 445.0=ε , and that for the lower one 
is 438.0=ε . Figure 4 shows two nodes, two saddles and 
so on. Notice that there still exists an approximate 
heteroclinic cycle in spite of asymmetry, and therefore, 
one can observe the switching phenomenon for smaller 
ε 2. The switching phenomenon is verified by Poincare 
mapped points in Fig.4 for 437.0=ε . The reason why 
there are more mapped points on the lower UM than those 
on the upper UM, is that the deviation from the 
bifurcation point is smaller for the lower UM 
( 001.0=∆ε ) than for the upper UM ( 008.0=∆ε ). When 

445.0438.0 << ε , the saddle-node pair denoted by A is 
lost, but that denoted by B still exists. Therefore, if one 
gives an initial condition around A, the flow follows the 
locus of the upper UM and converges to the node in B. 
For 438.0<ε , the upper and lower unstable manifolds 
both disappear, therefore the flow switches between A and 
B. 

Figure 5 shows the bifurcation diagram of the periodic 

                                                                               
1 The precise value of S-N bifurcation is a bit smaller than this value. 

Same is said for Fig.3 and Fig.5 and so on.  
2 In fact, this is not a heteroclinic cycle but a homoclinic cycle 

around 438.0=ε . One of the UM of the homoclinic cycle passes 
through near the locus of a degenerate saddle in A. Therefore it looks 
like a quasi-heteroclinic cycle. 

 
Figure 1: Bifurcation diagram of two symmetric periodic 
solutions for the symmetric system : 0.12 =k , 1.0=α  
and 1.3=β . The upper trace corresponds to the periodic 
attractor associated with the initial condition 
( )0(1x , )0(2x , )0(3x , )0(4x )=(2,0,0,0). The lower trace 
corresponds to the periodic attractor associated with 
(0,0,2,0). 

 
Figure 2: Nodes and saddles with their UM’s for 0.12 =k , 

1.0=α  and 1.3=β . The UM is drawn for 449.0=ε . 
The cross marks (× ) present the Poincare mapped points 
of the switching attractor at 447.0=ε . 
 
 
solution for the asymmetric case for 035.12 =k , 1.0=α  
and 1.3=β . The S-N bifurcation point for the upper 
solution is 444.0=ε , and that for the lower one is 

437.0=ε . Figure 6 shows the relationship between nodes 
and saddles and so on. Note that there is no heteroclinic 
cycle; namely, the upper UM connects two nodes in A and 
B, while the lower UM connects the node in B and R 
(=stable reverse-phase solution). Therefore, starting 
around the initial condition in A, the flow reaches the node 
in B for 444.0437.0 <<ε  and stays there forever. Further, 
for 437.0<ε  the flow stays in B for some time but 
eventually moves toward R. In the same way, the resulting 
transitional dynamics change with the value of 2k  due to 
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Figure 3: Bifurcation diagram of two periodic solutions 
for the asymmetric system : 033.12 =k , 1.0=α  and 

1.3=β . The periodic solutions corresponding to the 
upper and lower traces are explained in Fig.1. 

 
Figure 4: Relationship between nodes and saddles for 

033.12 =k , 1.0=α  and 1.3=β . The upper unstable 
manifold is drawn for 445.0=ε , and the lower one is 
drawn for 438.0=ε . The cross marks (× ) present the 
Poincare mapped points for the switching attractor at 

437.0=ε . 
 
 
different behavior of UM’s. The behavior of the flow 
starting around A at 436.0=ε  is shown by cross marks in 
Fig.6. Observe that the points move along the upper UM 
quickly ( 008.0=∆ε ) and stay on the locus of node in B for 
a long time and again move along the lower UM relatively 
slowly ( 001.0=∆ε ) and converge to R. 

Figure 7 shows the relationship between nodes and 
saddles and so on at 048.12 =k . For the S1-N1 pair A, the 
S-N bifurcation occurs approximately for 440.0=ε  and 
for the S2-N2 pair B, it occurs approximately for 431.0=ε . 
For 440.0431.0 << ε , the flow starting around A follows 
the locus of UM and converges to N2 in B. For 431.0<ε , 
the flow stays around the locus of S2-N2 in B and around R 
(=unstable reverse-phase solution) for a long time and 
moves quickly along the locus of the UM. 

 
Figure 5: Bifurcation diagram of two periodic solutions 
for the asymmetric system : 035.12 =k , 1.0=α  and 

1.3=β . The periodic solutions corresponding to upper 
and lower traces are explained in Fig.1. 

 
Figure 6: Relationship between nodes and saddles for 

035.12 =k , 1.0=α  and 1.3=β . The upper UM is 
drawn for 444.0=ε  and the lower UM is drawn for 

437.0=ε . The cross marks (× ) present the Poincare 
mapped points for the initial condition around A at 

436.0=ε . The S is unstable and the R is stable. 
 
 

Figure 8 shows the relationship between nodes and 
saddles and so on at 052.12 =k . For the S1-N1 pair A, the 
S-N bifurcation occurs approximately for 439.0=ε  and 
for the S2-N2 pair B, it occurs approximately for 428.0=ε . 
In this case the heteroclinic cycle in Fig.1 is divided in 
two homoclinic cycles. Therefore, for the initial condition 
around A at 438.0=ε , the mapped points draw the 
homoclinic cycle associated with A, namely a 
quasi-periodic oscillation can be observed. Further, for 
the initial condition around B at 427.0=ε , the mapped 
points draw the homoclinic cycle associated with B, 
namely another quasi-periodic oscillation can be 
observed. 

Figure 9 summarizes the relationship between nodes, 
saddles and UM’s for various value of 2k . In Fig.9 (a) for 
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Figure 7: Relationship between nodes and saddles for 

048.12 =k , 1.0=α  and 1.3=β . The upper UM is 
drawn for 440.0=ε  and the lower UM is drawn for 

431.0=ε . The cross marks ( × ) present the Poincare 
mapped points for the initial condition around A at 

429.0=ε . The S and R are unstable. 

 
Figure 8: Relationship between nodes and saddles for 

052.12 =k , 1.0=α  and 1.3=β . The right-hand side 
UM is drawn for 439.0=ε  and the left-hand side UM is 
drawn for 428.0=ε . The cross marks (× ) present the 
Poincare mapped points for the initial condition around A 
at 438.0=ε  and the other cross marks (+ ) present them 
for the initial condition around B at 427.0=ε . The S and R 
are unstable. 
 
 

12 =k , the S1-N1 and S2-N2 bifurcation points are the same, 
therefore, there exists a real heteroclinic cycle. However, 
in Fig.9 (a’) for 034.11 2 << k , the UM of S2 goes to N2, but 
on the way it approaches the locus of S1-N1 and stays there 
for a long time. We call such a homoclinic cycle a 
quasi-heteroclinic cycle. It is interesting that manner of 
connection of nodes and saddles by UM’s changes a lot 
with variation of 2k , and hence transitional dynamics 
change with 2k . 
 

 
Figure 9: Schematic diagrams for various values of 2k . 
N1(N2), S1(S2), R and S denote nodes, saddles, the 
reverse-phase periodic solution and the same-phase 
periodic solution, respectively. 
 
 
4. Conclusions 

In this paper, we elucidate the global bifurcation 
associated with the unstable manifold of saddles for the 
periodic solution bifurcated from a quasi-periodic attractor 
in asymmetric two-coupled oscillators with hard type 
nonlinearity. In the future, we will investigate more 
thorough bifurcation of this system. 
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