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Abstract- This paper focuses on developing a new
methodology to model and design periodic oscil-
lators of gene regulatory networks with multiple
genes, proteins and time delays, by using multiple
time-scale networks (MTN). Multiple time scale
properties are exploited to simplify the model ac-
cording to singular perturbation theory. We show
that a MTN has no stable equilibria but stable pe-
riodic orbits. Finally, a biologically plausible gene
oscillator is designed to demonstrate the theoreti-
cal results.

1 Introduction

Rhythmic phenomena exist at all levels among liv-
ing organisms with periods ranging from less than a
second to years [1, 2, 3]. From both theoretical and
experiment viewpoints, it is a great challenging prob-
lem in biological science to model, analyze and further
predict the periodic behaviors of bio-systems. On the
other hand, recent progress in genetic engineering has
made the design and implementation of artificial or
synthetic gene networks realistic from both theoreti-
cal and experimental viewpoints [5], in particular for
simple organisms, such as E.coli and yeast [1, 4].

Explicitly considering all variables and chemical re-
actions in a cell is unrealistic for a gene regulatory net-
work from modelling, analyzing and computing view-
point. However, in a cell, many different time scales
characterize the gene regulatory processes, which can
be exploited to reduce the complexity of the mathe-
matical models [1, 4]. For instance, the transcription
and translation processes in the gene network gener-
ally evolve on a time scale that is much slower than
that of phosphorylation, dimerization or binding reac-
tions of transcription factors in the protein network.
Such properties can be also exploited to simplify the
model provided that the simplified system is guaran-
teed to behave both qualitatively and quantitatively
as the original one.

This paper aims to develop a new methodology to
analyze and design biological oscillating networks with
time delays, by using multiple time-scale networks
(MTN). We show that a MTN with certain condi-
tions has no stable equilibria but stable periodic oscil-
lations, depending on the total time delay, although
it has a complicated network structure including both
positive and negative feedback loops. As an imple-
mentation example, a biologically plausible two-gene
synthetic model with genes lac and cI is designed to
demonstrate the theoretical result.

Figure 1: An illustration of MTN. (a): An example of
a basic MTN. (b): The reduced MTN of (a).

2 MTN

Generally, the dynamics of a gene network primarily
including the gene regulatory reactions, such as the
transcription and translation processes, evolves on a
time scale that is much slower than those of a pro-
tein network mainly including protein reactions, such
as phosphorylation, dimerization or binding reactions.
In addition, although dynamics are intertwined be-
tween gene network and protein network or metabolic
network, topological structure of interactions for each
network is relatively independent of each other. A
MTN [8] is constituted by exploiting such properties
to transform a complicated biological model into a
simplified but dynamically equivalent system.

2.1 Basic MTN

Assume the system in this paper to be a monotone
dynamical system, i.e. each element of its Jacobian
matrix J has the fixed sign for all x ∈ X. A edge be-
tween nodes i and j is defined as a Jacobian element
Jij . A loop is negative (or positive) if the product of
its edges connecting the loop is negative (or positive)
for all x ∈ X. A basic MTN consists of a fast posi-
tive feedback network (PFN) [5, 8] and a slow cyclic
feedback network (CFN) [8]. Assume that there are
m fast variables y = (y1, · · · , ym) and p slow variables
x = (x1, · · · , xp), representing the concentrations of
chemical components at time t, where p ≥ 2. As
shown in (a) of figure 1, then a MTN [8] can be written
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as

ẋ1(t) = f1(x2(t− τ12), x1(t), xn(t− τ1,n))
ẋi(t) = fi(xi+1(t− τi,i+1), xi(t), xi−1(t− τi,i−1), yt)

2 6 i 6 p− 2
ẋp−1(t) = fp−1(yt, xp−1(t), xp−2(t− τp−1,p−2))

ẋp(t) = fp(xp(t), yt), (1)
εẏ = g(xp−1(t− τp−1), xp(t− τp), yt) (2)

where yt ≡ y(t + θ), −r ≤ θ ≤ 0. τi+1,i = τi,i+1 = 0
for 1 ≤ i ≤ p − 1 if both ∂fi+1/∂xi and ∂fi/∂xi+1

are nonzero, and τi+1,i maybe any non-negative finite
real number if ∂fi/∂xi+1 = 0. ε is a small parameter
(> 0). All loops in eqn.(2) of PFN are positive and

∂fi(η, ξ, ζ)
∂η

∂fi+1(η, ξ, ζ)
∂ζ

≥ 0, (3)

where ∂fi+1(η, ξ, ζ)/∂ζ 6= 0, for 1 ≤ i ≤ p − 1. As-
sume that eqns.(1)-(2) are bounded due to biological
restriction.

Eqns.(1)-(2) are called a singularly perturbed system
also known as a fast-slow system with slow x and fast
y. Such multiple time-scale properties are found in
many biochemical systems, in particular gene regula-
tory systems [1, 4]. Fig.1(a) is an example of MTN.
Slow subnetwork is composed of p slow chemical com-
ponents from the 1st node to the p-th node. Note that
there is at least one single-direction interaction in the
slow subnetwork, i.e., ∂fp/∂x1 = 0 in Fig.1(a). Actu-
ally, it is not necessary from the p-th to 1-th nodes.
Fast subnetwork is comprised of m fast chemical com-
ponents from the (p + 1)-th node to the (p + m)-th
node, and is a PFN. Note that there may be many
variables in y interacting with x but only two vari-
ables in x affecting y.

When ε = 0, due to the properties of monotone
dynamical system [7], as shown in (b) of figure 1,
eqns.(1)-(2) degenerate to a CFN, i.e.,

ẋ1(t) = f̂1(x2(t− τ12), x1(t), xn(t− τ1,n))

ẋi(t) = f̂i(xi+1(t− τi,i+1), xi(t), xi−1(t− τi,i−1))

ẋp(t) = f̂p(xp(t), xp−1(t− τp,p−1)), 2 6 i 6 p− 1(4)

This system is called reduced system. We can prove
the following theorem.

Theorem 1 An orbitally and asymptotical stable
periodic-solution x = Φ(t) of eqn.(4) is stable under
persistent perturbations. Moreover, for sufficiently
small ε, x = Φ(t) is a stable periodic solution of
eqns.(1)-(2).

Based on the monotone dynamical system theory
and discrete Lyapunov functional [6], We can show
that the Poincaré-Bendixson type Theorem holds [8]
for the monotone CFN eqn.(4).

Theorem 2 Let x(t) be a solution of eqn.(4) on some
time interval [t0,∞), and f̂ satisfy eqn.(3). Then ei-
ther

Figure 2: An implementation. (a): Schematic for
the synthetic gene network by cI and Lac genes. (b):
Schematic of MTN for the synthetic gene regulatory
network shown in (a). (c): The reduced MTN.

1. ω(z) is a single non-constant periodic orbit; or
else

2. for each solution u(t) of eqn.(4) in ω(x), i.e., for
solutions with ut ∈ ω(x) for all t ∈ R, we have

α(u) ∪ ω(u) ⊆ E, (5)

where α(u) and ω(u) denote the alpha- and omega-
limit sets, respectively, of this solution, and where E
denotes the set of equilibria of eqn.(4).

A PFN is robust to time delay variations, whereas
time delays in CFN may significantly affect the dy-
namics of network. As indicated in eqn.(4), different
from the time delays in the slow subnetwork, the time
delays in the fast subnetwork or PFN has no effect
on the asymptotical dynamics of the original MTN or
the reduced MTN. In other words, we do not need
care about the time delays in the fast subsystems for
analyzing or designing gene oscillators, although they
may influence the system for the transient dynamics.

2.2 Generalized MTN

The result for the basic MTN with one fast PFN can
be easily extended to a general MTN with multiple
fast PFNs. Provided that each PFN interacts with
two neighboring variables in xt, Theorems 1 and 2
still hold for the corresponding CFN or the reduced
MTN. Although Poincaré-Bendixson type Theorem
shows that omega-limit sets of CFNs are composed of
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Figure 3: Results. (a): Sustained oscillations by
the MTN at dpx = 0.5 min−1, dmx = 1 min−1 and
τ = 100. (b): A bifurcation diagram with total
time delay τ as a parameter at dpx = 0.5 min−1 and
dmx = 1 min−1. (c) :The oscillatory region (OS) and
steady state region (SS) at τ = 100. (d): Total delay
τ and period T .

only periodic orbits and equilibria, it does not provide
sufficient conditions for periodic orbits. The sufficient
conditions and detailed proofs of these results for pe-
riodic orbits of the reduced MTNs can be found in [8].

3 Numerical implementation
In this section, we demonstrate our theoretical results
by designing a synthetic gene network, which is actu-
ally a MTN and consists of two fast PFNs and one slow
CFN. As shown in Fig.2(a), the synthetic gene regu-
latory network is a simple two-gene model with genes
cI and lac under the control of promoters PLlacO1
and P ∗RM respectively. All two genes are both well-
characterized transcriptional regulators, which can be
found in bacterium E.coli and λ phage. We assume
that the designed gene network is implemented in a
eukaryotic cell, e.g. in yeast, so as to examine the ef-
fect of time delays on the oscillation dynamics. mRNA
or mx of gene cI translates the protein CI or px in cy-
toplasm, which in turn forms a homodimer p2x and is
transported or diffused into the nucleus in the form
p′2x to enhance the expression of gene Lac by bind-
ing on the two operator sites of the promoter P ∗RM .
On the other hand, mRNA or my of gene lac trans-
lates the protein Lac or py, which forms a homod-
imer p2y and further a tetramer p4y in the cytoplasm.
When moved to the nucleus, the tetramer p4y is in the
form of p′4y, which represses the expression of gene

cI by binding on the operator site of the promoter
PLlacO1. The promoters PLlacO1 has one binding
site OR for Lac tetramer, but the promoter P ∗RM has
two binding sites OR1 and OR2 for CI dimers with
the affinity priority binding first on OR1 and second
on OR2. Note that P ∗RM is a mutated promoter from
PRM , which has no binding site for the tetramer Lac.
The Schematic for the synthetic gene network is shown
in Fig.2(a). Different from prokaryotes, there are time
delays (τmx, τmy, τpx, τpy) due to transportation or dif-
fusion of mRNAs and transcriptional factors between
the nucleus and cytoplasm, which may significantly af-
fect the dynamics of the system. Such a circuit can be
engineered on plasmids, and then be cloned to multi-
ple copies, e.g., by PCR. The engineered plasmids are
further assumed to grow in yeast, by injecting into
yeast and recombining into their genome.

As shown in (b) of figure 2, we define the follow-
ing chemical species in terms of concentrations: mx,
mRNA CI; px, CI protein; p2x, CI dimer in cyto-
plasm; p′2x, CI dimer in nucleus; Dy, the free DNA
binding or operator site in promoter P ∗RM ; p′2xDy, CI
dimer bound to operator site OR1 of promoter P ∗RM ;
p′2xp′2xDy, CI dimers bound to both OR1 and OR2 of
promoter P ∗RM ; my, mRNA Lac; py, Lac protein; p2y,
Lac dimer; p4y, Lac tetramer in cytoplasm; p′4y, Lac
tetramer in nucleus; Dx, the free DNA binding site
in promoter PLlacO1; p′4yDx, Lac tetramer bound to
the operator site OR of promoter PLlacO1. The fast
reactions are mainly multimerization and binding re-
actions for protein network. As indicated in figure
2(b). On the other hand, the slow reactions involve
transcription of mRNAs and translation of proteins,
and degradation of proteins and mRNAs. There are
also conservation conditions for total binding sites of
promoters, i.e., Dy + p′2xDy + p′2xp′2xDy = ny and
Dx +p′4yDx = nx, where nx and ny are the concentra-
tion of genes cI and lac, respectively. For convenience,
mx is denoted by X1, px by X2, my by X3, py by X4,
p2x by Y1, p′2x by Y2, p′2xDy by Y3, p′2xp′2xDy by Y4,
p2y by Y5, p4y by Y6, p′4y by Y7 and p′4yDx by Y8. Then
we have
dX1

dt
= kmx0(nx − Y8) + kmx1Y8 − dmxX1

dX2

dt
= kpxX1(t− τmx

) + 2k−1Y1 − 2k1X
2
2 − dpxX2

dX3

dt
= kmy0(ny − Y3 − Y4) + kmy1Y3

+kmy2Y4 − dmyX3

dX4

dt
= kpyX3(t− τmy

)− 2k5X
2
4 + 2k−5Y5 − dpyX4

dY1

dt
= k1X

2
2 + k−2Y2(t− τpx)− k−1Y1 − k2Y1

dY2

dt
= k2Y1(t− τpx

)− k−2Y2 + k−3Y3

−k3(ny − Y3 − Y4)Y2 + k−4Y4 − k4Y2Y3

dY3

dt
= k3(ny − Y3 − Y4)Y2 + k−4Y4

−k4Y2Y3 − k−3Y3
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dY4

dt
= k4Y2Y3 − k−4Y4

dY5

dt
= k5X

2
4 − k−5Y5 − 2k6Y

2
5 + 2k−6Y6

dY6

dt
= k6Y

2
5 − k−6Y6 + k−7Y7(t− τpy )− k7Y6

dY7

dt
= k7Y6(t− τpy )− k−7Y7

−k8Y7(nx − Y8) + k−8Y8

dY8

dt
= k8(nx − Y8)Y7 − k−8Y8. (6)

Parameters are mainly from [4] with slight modifi-
cations, and are set as kmx1 = 0.2 min−1, K8 =
2×1013 M−1, nx = 1 nM, ny = 1 nM, K6 = 107 M−1,
K5 = 108 M−1, kmx0 = 3 min−1, kpx = 4 min−1,
kmy1 = 3 min−1, kmy2 = 12 min−1, K1 = 5×107 M−1,
K3 = 3× 108 M−1, dmy = 5 min−1, kmy0 = 2 min−1,
kpy = 1 min−1, dpy = 2 min−1 and σ = 2. Other
parameters are given when they are used. According
to the above parameters, the variables are scaled as
X1 (nM) ∼ 0.8x1, X2 (nM) ∼ 8x2, X3 (nM) ∼ 8x3,
X4 ∼ 0.8x4 and t (min) ∼ t′/1.37. Note that τ is
also a scaled time delay by 1.37. As shown in (c) of
figure 2, the MTN is reduced to a CFN according to
Theorems 1 and 2.

Fig.3(a) shows a case for sustained oscillations gen-
erated with dpx = 0.5 min−1, dmx = 1 min−1 and
τ = 100, which confirms our theoretical prediction.
Because the fast reactions as perturbations do not
change their period or amplitude in the long run, limit
cycle oscillations represent a particularly stable mode
of periodic behavior. Such stability holds with the ro-
bust nature of circadian clocks which have to maintain
their amplitude and period in changing environment.

The bifurcation diagram for x2 is shown in Fig.3(b),
where the control parameter is the total time delay
τ . The solid line and dashed lines represent stable or
unstable equilibrium, respectively. The dash-dotted
lines indicate the maximum and minimum values of x′2
for the sustained oscillation. Limit cycles exist when
τ > τ̄ for which the equilibrium is unstable. At low
values of τ , the system reaches a stable steady state
corresponding to some constant concentrations of the
state variables. With the increase of τ , a bifurcation
occurs at a critical value τ̄ = 10.65. After τ > τ̄ ,
the steady state becomes unstable and sustained os-
cillations occur. The amplitudes of the sustained os-
cillations are also shown in Fig.3(b). When τ = τ̄ ,
we get a pair of imaginary roots λ = ±0.20j for the
characteristic equation, which corresponds to a Hopf
bifurcation point. Moreover, from Fig.3(b), the ampli-
tudes increase with the time delay τ when τ is small,
which means that the time delay can be used to con-
trol the amplitudes. However, when τ is large, the
amplitudes is not sensitive to τ .

The oscillatory region (OS) and steady state region
(SS) at τ = 100 are shown in Fig.3(c), from which we
can see that oscillations are generally enhanced with
the increase of the degradation rates of mRNA cI.

The analysis of the effect for total time delay τ on
the period of oscillation T is Fig.3(d). In addition to
amplitudes as shown in Fig.3(b), the period of oscilla-
tion, namely T , increases with the total time delay τ
in almost a linear way. Therefore, the total time delay
τ can be viewed as a key parameter to control both
amplitude and period of an oscillation in a biological
system.

There are mainly four delays, (τmx, τmy) and (τpx,
τpy) representing transportation or diffusion processes
from nucleus to cytoplasm of mRNAs and from cyto-
plasm to nucleus of proteins respectively, which play
different roles in dynamical behaviors of the system.
Since τpx and τpy are in PFNs, they have no effects on
the asymptotical dynamics. On the other hand, τmx

and τmy both qualitatively and quantatively affect the
dynamcial behaviors not separately but in the form of
τ = τmx + τmy, due to cyclic structure of the CFN.

4 Conclusion
We developed a new methodology to analyze and de-
sign biological oscillating networks with time delays,
by using MTNs. We first describe a basic MTN with
only one PFN, and then extended our result for multi-
ple PFNs, which enables our model to apply to wider
systems for modelling and designing bio-oscillators.
As indicated in this paper, in contrast to the time
delays in the slow subnetwork that significantly affect
the dynamics of the system, the time delays in the
fast subnetwork or PFN has no effect on the asymp-
totical dynamics of the MTN although they may play
an important role in the transient dynamics. Such a
property is important in designing or modelling gene
oscillators when time delays are concerned.
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