
An Approach to the TSP based on Growing Self-Organizing Maps

Takeshi Ehara †, Hiroki Sasamura ‡ and Toshimichi Saito†

†EECE Dept, Hosei University, Koganei, Tokyo, 184-8584 Japan
‡Pentax Co. Ltd., Itabashi, Tokyo, 174-8639, Japan,

Email: {ehara, sasamura}@nonlinear.k.hosei.ac.jp, tsaito@k.hosei.ac.jp

Abstract—This paper studies application of a sim-
ple self-organizing map to the traveling salesperson
problem. The map has ring topology and the learning
algorithm is characterized by two parameters. Apply-
ing city positions successively as input data, the map
can grow flexibly and tour can be obtained. Basic ex-
perimental results suggest that our simple algorithm
can find almost optimum solutions. Dependence of a
parameter on the solutions is also discussed.

1. Introduction

Learning algorithms of self-organizing maps (ab.
SOMs) are known as typical unsupervised learning
algorithms which can extract features of input data
automatically [1]. In order to increase flexibility and
adaptability, self-organizing maps having growing cell
structures (ab. GCS) have been studied [2]-[4].
The GCS can change the size and topology of the
maps adaptively to the input data. Applications of
the GCS include data visualizations, pattern classifi-
cations, vector quantizations and knowledge discovery
[2]-[6]. If the GCS has tree or ring topology, it is ap-
plicable to image skeletonizations [7] [8] and the trav-
elling salesperson problem (ab. TSP) [9] [10]. This
paper studies an approach to the TSP based on the
ring GCS (ab. RGCS). The TSP is a classical combi-
natorial optimization problem and is known to be NP-
complete [11]. The task is to find the shortest possible
tour through the set of M cities that passes through
each city exactly once. In order to find the optimum
solution, interesting algorithms have been studied: the
Hopfield net approach [12], the elastic net approach
[11], the RGCS approach [9] [10] and so on.

This paper studies a simple GCS-based algorithm
to the TSP. The map has ring topology and can grow:
the number of cells can increase. The algorithm is
characterized by two parameters: learning rate and
time interval to insert a cell. Applying city positions
successively as input data, the map can grow flexibly
and tour can be obtained. Although our algorithm is
simpler than existing algorithms, we can find almost
optimum solutions. The algorithm efficiency is con-
firmed by basic numerical experiments. Dependence
of the insertion time interval on the solutions is also
discussed.

2. The Ring GCS and algorithm

The map consists of cells and the number of cells is
time variant. Let t be the discrete time and let N(t)
be the number of cells at time t. The i-th cell, i ∈
{1, · · · , N(t)}, is connected with its closest neighbors
Ni = {i − 1, i + 1} where i + 1 and i − 1 are modulus
N(t): the RGCS has ring topology as shown in Fig. 1.
At time t the position of the i-th cell is represented by
its weight vector wi(t) ∈ R2 and the i-th cell has the
counter Ci(t) ∈ Z+ that controls the growing of the
RGCS. R and Z+ denote reals and positive integers,
respectively.

The objective data set consists of city positions

CP ≡ {CP1, · · · , CPM}, CPi ≡ (Xi, Yi) ∈ R2

where M is the number of cities and CPi is the i-th
city position. Let x(t) be the input at time t. One
city position is selected from CP and is applies as an
input to the RGCS.

In order to find the shortest possible tour, we present
the following algorithm consisting of 8 steps.

STEP 1 (Initialization)
Let t = 0 and let Ci(0)=0.

STEP 2 (Input)
According to a uniform random number, we select one
element from CP and apply it as an input x(t).

STEP 3 (Winner)
We find the cell whose weight vector is the closest to

Figure 1: RGCS and its update. White circles denote
cell positions and black circles denote city positions.

2004 International Symposium on Nonlinear
Theory and its Applications (NOLTA2004)

Fukuoka, Japan, Nov. 29 - Dec. 3, 2004

709

the input x(t) and declare it as the winner c:

||x(t) − wc(t)|| = min
i

||x(t)− wi(t)|| (1)

where || · || denotes the Euclidean distance. If there ex-
ist plural closest cells we select one of them randomly.

STEP 4 (Update of weight vector and counter)
According to Equation (2) weight vectors of the winner
and its neighbors are updated as illustrated in Fig. 1.
The other weight vectors are preserved.

wi(t + 1) =
{

wi(t) + α(x(t) − wi(t)) for i ∈ Nc

wi(t) for i /∈ Nc

(2)
where Nc = {c−1, c, c+1}modulus n(t). The learning
rate α is the first parameter of this algorithm. Accord-
ing to Equation (3) counter of the winner is updated.
The other counters are preserved.

Ci(t + 1) =
{

Ci(t) + 1 for i = c
Ci(t) for i �= c

(3)

STEP 5 (Insertion of a cell)
At every Tint times, we find the cell q that has the
maximum counter value.

Cq(nTint) > Ci(nTint) for all i �= q. (4)

If there exist plural maximum counter values we select
one of them randomly. This selection corresponds to
inspection of the learning history. We then pick up
closer neighbor cell f of the cell q.

f =
{

q − 1 mod N(t) if wq−1(t) is closer
q + 1 mod N(t) if wq+1(t) is closer

A novel cell r is inserted between q and f as shown in
Fig. 2 and let N(t +1) = N(t)+1. The weight vector
of cell r is given by Equation (5)

wr(t + 1) = 0.5(wq(t) + wf(t)). (5)

The insertion time interval Tint is the second param-
eter of this algorithm. Counter values of cells r and q
are re-assigned by Equation (6)

Cq(t + 1) = 0.5Cq(t), Cr(t + 1) = 0.5Cq(t) (6)

STEP 6 (Comparison of cities and cells)
If the number of cells exceeds the number of cities,
N(t+1) ≥ M , allocation of a cell to each city is possi-
ble and go to STEP 7. If N(t + 1) < M then t = t + 1
and go to STEP 2.

STEP 7 (Allocation of cells)
For each city, we find the closest cell to the city as
shown in Fig. 3. If there exist plural closest cells we
select one of them randomly (the selection is only once
for each cell). Since the RGCS has ring topology, a

q

f

r

q

f

r

Figure 2: Insertion of a cell

Figure 3: Finding a tour by allocation of cells. White
circles denote cell positions and black circles denote
city positions.

tour can be obtained after the allocation. Then go to
STEP 8.

STEP 8
Let t = t + 1. If t < Tmax then go to STEP 2, where
Tmax is the learning time limit. If t = Tmax then the
learning is terminated.

3. Numerical Experiments

Noting the algorithm parameters are learning rate
α and insertion time interval Tint, we apply the algo-
rithm to a TSP with 52 cities at Web site

http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95/

At t = 0, we give initial conditions:

N(0) = 3, Ci(0) = 0

wi(0) ∈ are 3 white circles in Fig. 4

52 black circles in Fig. 4 correspond to the objective
city positions and one of them are selected randomly
as an input at time t. In this experiment, the learning
rate is fixed α = 0.1 and the insertion time interval
is varied Tint ∈ {50, 100, 200}. As the learning goes
on the map is growing as shown in Fig. 4. When the
number of cells exceeds the number of cities, allocation
of cells to all the cities is possible (STEP 8) and we
can obtain a tour.

710

4900' −=t

)0(=t

4900' −=t

)0(=t

3900' −=t 3900' −=t 3900' −=t

2900' −=t 2900' −=t 1900' −=t 1900' −=t

0' −=t 0' −=t 0' =t 0' =t

2000' =t 2000' =t 5000' =t 5000' =t

Figure 4: Learning process (Tint = 100, α = 0.1,
N(0) = 3) . white circles denote cell positions and
black circles denote city positions. For t′ ≥ 0 , cells
are omitted and tour is shown.

Let T1 be the time at when the number of cells at-
tains the number of cities and let

t′ = t − T1. (7)

t′ (respectively, t) is the discrete time of the learning
progress from T1 (respectively, the beginning)to the
termination For t′ < 0 the tour does not exist. For
t′ ≥ 0 the tour may be improved by continuing the
learning. Fig. 5 shows several tour patterns at t′ =
2000 for three values of Tint and a special case where
Tint = 100 for t′ < 0 and no insertion (Tint = ∞) for
t′ ≥ 0. Each tour is characterized by the tour length
L. These results suggest that the learning after T1 can
improve the tour provided Tint is selected suitably.

Fig. 6 shows the learning history for t′ ≥ 0. In
this figure, the tour length is normalized by the known
optimum tour length OPT . The doted curve denotes
the special case without insertion: the number of cells
is fixed for t′ ≥ 0. Usually tours are twisted at t′ = 0
(t = T1). Continuing inserting cells at Tint times after
t = T1, the twist can be removed and the tours can be
improved. However, in the Special Case, the insertion
is stopped after t = T1 and improvement of the tours
is hard. If the number of cells is small (respectively,
large), each city has a few (respectively, many) options
to capture a cell.

L′ =
L

OPT
(8)

We can see that the tour length closes rapidly to the
optimum value (L′ = 1) for Tint = 50. As Tint in-
creases to 100 and then to 200, the initial approach to
the optimum value delays but final value closes to the
optimum value. For Tint= 50 each city has many op-
tions to capture a cell at relatively early step and the
tour length can close to the optimum value. For Tint=
200 each city has a few options to capture a cell and
improvement of the tour is hard at early steps. How-
ever, as the learning goes, the number of cells increases
and the improvement is to be possible.

It should be noted that our method is simpler than
the method in [13]. In [13], the learning rate α depends
on distance between winner and other cells and the
region of neighbor depend on the α. In our method, α
is constant and region of neighbor is fixed.

4. Conclusions

We have studied a simple learning algorithm to the
TSP. The algorithm is based on the GCS with ring
topology and we can obtain almost optimum tour (so-
lutions) provided the two parameters are selected suit-
ably. Effects of the insertion time interval is also dis-
cussed. Future problems include analysis of the learn-
ing process, application to larger scale problems and
automatic parameters setting.

711

50int =T
05.1=L
50int =T
05.1=L
50int =T
05.1=L

100int =T
01.1=L

100int =T
01.1=L

100int =T
01.1=L

200int =T
07.1=L

200int =T
07.1=L

200int =T
07.1=L 03.3=L

Special Case
03.3=L

Special Case

Figure 5: Tour at time t′ = 2000 (α = 0.1). Special
Case : Tint = 100 for t′ ≤ 0 and no insertion (Tint =
∞) for t′ > 0 .

References

[1] T. Kohonen, Self-organization and associative
memory, 2nd Ed., Springer-Verlag, Berlin (1988)

[2] B. Fritzke, Growing cell structures - a self-
organizing network for unsupervised and super-
vised learning, Neural Networks, 7, pp.1441-1460,
1994.

[3] B. Fritzke, Growing neural gas network learns
topologies, Advances in Neural Information Pro-
cessing Systems, 7, pp. 625-632, 1995

[4] S.Kawahara and T.Saito, An adaptive self-
organizing algorithm with virtual connection, J.
Advanced Comput. Intelli., 2, 6, pp. 203-207,
1998.

[5] D. Alahakoon, S. K. Halganmuge and B. Srini-
vasan, Dynamic self-organizing maps with con-
trolled growth for knowledge discovery, IEEE
Trans. Neural Networks, 11, 3, pp. 601-614, 2000.

[6] R. Ohta and T. Saito, A growing self-organizing
algorithm for dynamic clustering, Proc. of
IJCNN, pp.469-473, 2001.

200int =T

50int =T 't
1

2000 3000 50001000 4000

2

5.0

3

0

'L

100int =T

Special Case

200int =T

50int =T 't
1

2000 3000 50001000 4000

2

5.0

3

0

'L

100int =T

Special Case

Figure 6: Tour length and insertion time interval Tint

[7] R. Singh, V. Cherkassky and N. Papanikolopou-
los, Self-organizing maps for the skeletonization
of sparse shapes, IEEE Trans. Neural Networks,
11, 1, pp. 241-248, 2000

[8] H. Sasamura and T. Saito, A Simple learning
algorithm for growing self-organizing maps and
its application to the skeletonization, Proc. of
IJCNN, pp. 787-790, 2003

[9] B. Angeniol, G. de La C. Vaubois and J. Y.
Le Texierr, Self-organizing feature maps and the
traveling salesman problem, Neural Networks, 1,
pp. 289-293, 1988.

[10] H. Sasamura, R. Ohta and T. Saito, A sim-
ple learning algorithm for growing ring SOM
and its application to TSP, Proc. ICONIP, CD-
ROM#1508, 2002.

[11] R. Durbin, R. Szeliski and A. Yuille, An analysis
of the elastic net approach to the traveling sales-
man problem, Self-organization map formation,
pp. 407-417, MIT press, ed. K. Obermayer and
T. J. Sejnowski, 2001.

[12] J. J. Hopfield and D. W. Tank, Neural computa-
tion of decisions in optimization problems, Biol.
Cybernet, 52, pp.141-152, 1985.

[13] K. Fujimura, H. Tokutaka and M. Ishikawa, Per-
formance of improved SOM-TSP algorithm for
traveling salesman problem of many cities, Trans.
IEE Japan, 119-C, 7, pp.875-882 (in Japanese,
1999)

712

