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Abstract—In this paper a theory developed by the au-
thor is reviewed for brain dynamics of recurrent neural
networks. Recently, ”Hybrid Dynamical Systems” have
attracted considerable attention in automatic control do-
main. The hybrid dynamical system is defined by a con-
tinuous dynamical system discretely switched by exter-
nal temporal inputs. The theory suggests that the dynam-
ics of continuous-time recurrent neural networks, which is
stochastically excited by external temporal inputs, is gen-
erally characterized by a set of continuous trajectories with
a fractal-like structure in hyper-cylindrical phase space.

1. Introduction

A Hybrid Dynamical System (HDS) [1] is a dynamical
system that involves an interaction of discrete and continu-
ous dynamics, e.g., a continuous-time device controlled by
a sliding mode controller [2]. Control strategies introduced
for HDS have been applied to various design problems for
realizing desired behavior in power plants [3], chemical
plants [4], etc.

The dynamical evolution of HDS can be described by
a differential equation involving a number of vector fields
that are switched one after another [5]. It has been shown
that HDS displays very complex behaviors such as chaotic
behavior [6]. Branicky has presented a numerical experi-
ment for HDS described by a simple linear equation and
shown that the state of the system moves around on the
Sierpinski gasket, a very well-known fractal set. This re-
sult suggests that the fractals may universally appear in
some classes of HDS [7]. In this paper a theory for con-
tinuous recurrent neural networks with temporal inputs are
reviewed from hybrid dynamical systems point of view.

We focus on dissipative, continuous, and non-
autonomous recurrent neural networks defined by the fol-
lowing ordinary differential equations:

ẋ = f(x, t), (1)

x ∈ RN ,

where x, t and f are state, time, and vector field, respec-
tively. Equation (1) implies that the vector field depends on
time. In general, this suggests that a network is influenced
by other systems. To emphasize that the vector fields de-
pend on time throughout the input I(t), we rewrite Eq. (1)

as follows:
ẋ = f(x, I(t)), (2)

x, I ∈ RN .

2. Dynamics with Periodic Inputs

We will begin by considering a dynamics with a periodic
input:

I(t) = I(t + T ),

where T is the period of the input. The vector field f is
also periodic with the same period T :

f(t) = f(t + T ).

Introducing the angular variable θ = 2π
T t mod 2π and

new state variable y = (x, θ), we can transform the non-
autonomous system expressed by Eq. (2) into the following
autonomous system:

ẏ = fI(y), (3)

y ∈ RN × S1.

The vector field fI is defined on a manifold M : RN × S1

that is a hyper-cylindrical space. In other words, Eq. (3)
expresses a continuous dynamical system Dc defined by
the manifold M and the vector field fI :

Dc = (M, fI). (4)

In the hyper-cylindrical space M, we can define the
Poincaré section:

Σ =
{
(x, θ) ∈ RN × S1|θ = 2π

}
,

where a trajectory starting from an initial state at θ = 0
returns at θ = 2π. On the section Σ, a mapping can be
defined which transforms a state xτ to another state xτ+1

after interval T :
xτ+1 = gI(xτ ), (5)

xτ ∈ RN ,

where gI is an iterated function. In other words, Eq. (5)
expresses a discrete dynamical system Dd defined by the
manifold Σ and the iterated function gI :

Dd = (Σ, gI). (6)
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We can summarize the dynamics with a periodic input as
follows. The periodic input I defines two dynamical sys-
tems, a continuous one Dc and a discrete one Dd defined
by Eqs. (4) and (6), respectively. In order to emphasize
the relation among I , Dc and Dd, we use the following
schematic expression:

I → Dc → Dd. (7)

3. Dynamics with Switching Inputs

3.1. A Set of Inputs

In this section, we consider a dynamics in which plural
input patterns are stochastically fed into the system one af-
ter the other. Let us suppose that each input is one period
of a periodic function. For example, we can define the pe-
riodic function by the following Fourier series:

I(t) =
a0

2
+

M∑
m=1

(am cos
2πm

T
t + bm sin

2πm

T
t), (8)

where a0, am, bm ∈ RN are vectors for Fourier coeffi-
cients, and T is the period. The set of these parameters
defines the input space:

I =
{

a0, {am, bm}M
m=1 , T

}
,

I : RN+2×N×M+1.

Within this space, an arbitrary point represents an external
temporal input. We consider the input as a set {Il}L

l=1 of
time functions Il sampled on the parameterized space I.
In the following sections, we abbreviate subscripts and ex-
press individual sets as {·} for simplicity.

3.2. Two Sets of Dynamical Systems

Much as in the case of periodic input, we can define two
sets of dynamical systems corresponding to the set {Il}.
One is the set of continuous dynamical systems:

{Dcl} = (M, {fl}), (9)

where {fl} is the set of vector fields on the hyper-
cylindrical space M. The other is the set of discrete ones:

{Ddl} = (Σ, {gl}), (10)

where {gl} is the set of iterated functions on the global
Poincaré section Σ. We also use the following schematic
expression, which is similar to expression (7):

{Il} → {Dcl} → {Ddl} . (11)

3.3. Excited Attractor

In this paper, we are considering a continuous dynamical
system that is dissipative and has an attractor for a periodic
input. When an input pattern is fed into the system repeat-
edly, i.e, in the case of periodic input, a trajectory converges
to an attractor. But how do we describe the dynamics when
the inputs are switched stochastically? Even for an input
with finite interval, we can assume an attractor correspond-
ing to a periodic input with infinite interval. We call this
an excited attractor in order to emphasize that the attrac-
tor is excited by the external input. Although a trajectory
tends to converge to a corresponding excited attractor, the
trajectory cannot reach the excited attractor due to the finite
time interval. If the next input is the same as the previous
one, the trajectory again goes toward the same excited at-
tractor. If the next input is different from the previous one,
the trajectory changes its direction and goes toward an ex-
cited attractor distinct from the previous one. Continuing
this process, the trajectory takes a transient path to the ex-
cited attractors. Intuitively, the trajectory will be spread
out around excited attractors in the hyper-cylindrical phase
space M. How, then, do we characterize the properties of
the transient trajectory?

4. Fractal Transition

4.1. Iterated Function System

In the following two sections, we focus on the set {gl}
of iterated functions on the global Poincaré section Σ.

4.1.1. Hutchinson’s Theory

Hutchinson [8] has proved that a set {hl} of iterated
functions, which are not limited on the Poincaé section,
defines a unique and invariant set C that satisfies the fol-
lowing equation:

C =
L⋃

l=1

hl(C), (12)

where
L⋃

l=1

hl(C) = h1(C) ∪ h2(C) ∪ · · · ∪ hL(C),

and

hl(C) =
⋃

x∈C

hl(x).

Such an invariant set C is often a fractal or sometimes used
as a mathematical definition of various fractals.

A sufficient condition for satisfying Eq. (12) is the con-
traction property of hl for all l = 1, 2, ..., L. The contrac-
tion for hl is definitely defined by the Lipschitz constant
Lip(hl):

Lip(hl) = sup
xi �=xj

d(hl(xi), hl(xj))
d(xi, xj)

, (13)
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where d is a distance on a metric space. When

Lip(hl) < 1,

the map hl : x → x is called the contraction or the con-
traction map.

4.1.2. Iterated Function System with Probabilities

Barnsley has named a set {hl} as the IFS (Iterated Func-
tion System) [9]. He introduced the IFS with probabilities
as follows:

({hl} , {pl}), (14)

where {pl} is a set of probabilities corresponding to {hl}.
Based on the IFS with probabilities, he proposed an al-

ternative method for constructing the invariant set C that
satisfies Eq. (12). The iterated functions hl are switched
with probabilities pl for l = 1, 2, ..., L as follows. Choose
an initial point and then choose recursively and indepen-
dently xτ+1 ∈ {h1(xτ ), h2(xτ ), ..., hL(xτ )} for τ =
0, 1, 2, ...,∞, where the probability of the event xτ+1 =
hl(xτ ) is pl. Thus a sequence constructs a set {xn}∞n=0.
Using Hutchinson’s theory, Barnsley has shown that the
set {xn}∞n=0 constructed by random sequence, and here as-
sumed to have equal probability, “converges to” the set C
defined by Eq. (12) when all iterated functions are the con-
tractions. The set {xn}∞n=0 is thus an approximation of C.

4.2. Vector Field System

We are now ready to consider the trajectory of contin-
uous dissipative dynamical systems excited by the tempo-
ral inputs. When the inputs Il are stochastically fed into
the system one after another, the vector fields fl and the
iterated functions gl are also stochastically switched as ex-
plained in Sec. 3. To emphasize the relation among the set
{Il}, {fl} and {gl} , we use the following schematic ex-
pression instead of expression (11):

{Il} → {fl} → {gl} . (15)

We call the set {fl} the Vector Field System (VFS), which
is similar to the Iterated Function System (IFS) for the set
{gl}. The discrete dynamics on the Poincaré section Σ
correspond to the random iteration algorithm using the IFS
with probabilities. That is, when all iterated functions gl

are the contractions, the state xτ on the Poincaré section
approximately changes on the invariant set C defined by
Eq. (12) after sufficient random iterations. The property of
the set C having the fractal structure affects the trajectory
in the hyper-cylindrical phase space M.

The trajectory set Γ (C) corresponding to the input set
{Il} is obtained by the union of the trajectory set γl(C) for
each input Il:

Γ (C) =
L⋃

l=1

γl(C),

= γ1(C) ∪ γ2(C) ∪ · · · ∪ γL(C). (16)

We can conclude that the dissipative dynamical systems
excited by plural temporal inputs are characterized by the
trajectory set Γ (C) starting from the initial set C defined
by Eq. (12). All of the trajectories are considered to repre-
sent the transition between the excited attractors. We call
this the fractal transition between the excited attractors. At
this point, we should emphasize that the contraction prop-
erty of iterated functions defined on the Poincaré section
is a sufficient, but not necessary, condition for the fractal
transition.

5. Discussion

In this paper a theoretical framework is reviewed for a
recurrent neural networks stochastically excited by exter-
nal temporal inputs. In this section we discuss some re-
lated works. More general theory has been presented in
order to model complex systems that interact strongly with
other systems. It has been revealed that these dynamics are
generally characterized by fractals when the iterated func-
tions are not the contractions [10]. The hierarchical struc-
ture of fractals and the noise effect of inputs have been in-
vestigated [11]. The fractals generated by switching vector
fields have been observed in different domains such as a
forced damped oscillator [12], an electronic circuit [13],
artificial neural networks [14], and human behavior [15].
Closure of the fractals in both linear [16] and non-linear
systems [17] has been also presented. A set of attractors
obtained by periodic inputs can approximate trajectories of
fractals [18]. These works show that fractals are indispens-
able for understanding of dynamics observed in the brain.
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