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Abstract—Jacobian elliptic Chebyshev rational map2.1. EDP and CSP
and its associated binary function have been defined forW il bedin b ideri di 7
generating sequences of independent and identically dis- © Wil begin by considering an ergodic map. / =

tributed binary random variables. We have also shown th ‘f’ et]' = L _SuPp_OS? tg‘élmaﬂ') has %umct{ug abSOLLUter
derivative of the elliptic function induces a Jacobian eIIip-Con inuous invariant (ACI) measure denoted ojw)dw.

tic curve and a 2-dimensional rational map. This pape 0 evaluate statistical properties, we introduce the follow-

shows that a real-valued orbit on the curve can genera'ﬂizg four definitions.

a sequence of 2-dimensional i.i.d. binary random vectorsDefinition 1 (Perron-Frobenius operator [4])
The Perron-Frobenius operatByr acting on function

1. Introduction of bounded variatiot{ (w) for 7(w) is defined as

Sequences of independent and identically distributed d N-1
(i.i.d.) binary random variables are applicable in modern ~ P:H(w) = o H(y)dy = Z g (w)lH(gi(w)), (1)
digital communication systems. For example, spread spec- @ Jride)
trum (SS) system, cryptosystems, computational applica- whereg;(«w) is thei-th preimage ofo and N, denotes
tions requiring random numbers [8], [9], [10] and so on.  the number of preimages.

Ulam and Von Neumann [1] pointed out that logistic map Thi tor h . tant v which bl
is a strong candidate for pseudo-random number generator IS operator has an important property which enables

(PRNG) even though it has a non-uniform absolutely corlS tq evaluate correlational properties of chaotic sequences,

tinuous invariant (ACI) measure. Motivated by Ulam anc}hat IS

Neumann's so_phisticat_ed statement, we have shown that a fG(w)PT{H(w)}dw _ fG(T(a)))H(a))dw, )

class of ergodic map with equidistributivity property (EDP) I I

can generate sequences of i.i.d. binary random variables,\;f]ereG(.) c [,

its associated binary function satisfies the constant summa- S

tion property (CSP) [5] (see [6] for detalils). Deflnltlon_z (EDP: eqU|d|str|_but|V|ty property [_5])_
Fortunately, many well-known 1-dimensional maps sat- |f @ piecewise-monotonic onto mafw) satisfies

isfy EDP which are topologically conjugate to the tent , 1 )

map via homeomorphism [6]. We have proven that these g (WS (gi(w)) = ﬁrﬁ(‘”) O0<i<N:-1 (3)

maps and their associated binary function can generate se-

guences of i.i.d. binary random variables [5]. Also we have

shown that derivative of Jacobian elliptic Chebyshev ratio-

nal map [7] induce an elliptic curve which is defined by an Now let us consider a stationary real-valued sequence

elliptic integral in real numbers. In this paper, it is shownH(X,)},, whereX, = 7"(w). The ensemble average

that real-valued orbits on the curve can produce a sequer€pg{(X,)] is defined by

of 2-dimensional i.i.d. binary random vectors. In other

words, binary expansions of 2-dimensional real-valued se- E[H(X,)] = f H({"(w)) f*(w)dw. 4

guences can generate i.i.d. binary random vectors. !

then the map is said to satisfy equidistributivity prop-
erty.

Because the process is stationary, we de&pfé(X,)] by

2. How to generate sequences of i.i.d. binary random ELH(X)].
variables Definition 3 (CSP: constant summation property [5])
For a class of maps with EDP, if its associated function
H(') satisfies

N;-1
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thenH(') is said to satisfy constant summation prop- ; =10}
erty. I w=0 y

T={-t) ty t
o, Tttt 11}

Definition 4 (topological conjugation [4]) 4 A W= i
Two transformationg © / — [ and7 : [ — [ on ﬂ ﬂ r’ T={ty 15, 1),
intervals/ and / are called topological conjugate if dh e | s w6
. . - —o  [de=[L1]
there exists a homeomorphigm: 7 onp 1, such that
(w) = hoToh™Hw).

Figure 1: Symmetric binary functiofi;(w)

Supposer(-) and(-) have their ACI measures, denoted

) _ . Chaos Generator Bit Generator
by f*(w)dw and f*(w)dw respectively. Then, under the () with EDP Ci(®) with CSP
topological conjugation, these ACI measures have the rela- | —— Secret Key w11 Seeret Key -
tion 3 seed o) parameter ofmap, : 3 set of thresholds 7={,}, 0l '
ﬁ( dh_l(w) -1 3 i 3 G)I”((Dn) 3 modulo-2 adder
w) = d /[*(h (0.))) (6) : ®,,.;|Nonlinear Map| @ o i
w - s
3 ) i i @ : > Cr (o)
) . . i i : 1 4
2.2. Symmetric binary functions | b !se f
| I | sequence o
_ 3 seed | iid. BR.V.s
In our previous study, we proposed the method | w):[del—[del ittt =dte 0=r=M |
to obtain binary sequences from chaotic real-valued real-valued {e,} O(w) : Binary R. V.

sequences”(w)} , as follows [5].
We define a partitiod = tg < t; < -+ < toyy = e 0f [d, €]
and T denotes the set of thresholg$?*. Then we get a

Figure 2: Generator of discrete chaotic sequences

binary function 3. 2-dimensional map and Abel’s diferential equation
2M . . . . .
This section describes how 2-dimensional maps are con-
— _1Y 1
Crlw) = ZO( 0, (@) () structed. Several ergodic maps, which are topologically
"~ conjugate to the tent mapare governed by Abel's fier-
Theorem 1 ential equation [11].

For a class of maps with EDP, following three sym- Kohda and Fujisaki [7] have introduced the Jacobian el-
metric properties: liptic Chebyshev rational map with modulisvhich is de-

1. the symmetric binary functiofir(w), defined as  fined by
i+t ,=d+e r=01,...,.M (8) R(w,k) =cn(penY(w, k). k),  we[-11]. (12)
This map has its ACI measure

0 = dw
fre-o)=fw wel @ SN e )

2. the symmetric ACI measure, defined as

(13)

3. the symmetric map, defined as where K(k) is the complete elliptic integral defined by

2 do
—w) = K(k) = f ——————. And this map is topologi-
7(d + e — w) = (W) wel (10) () 0 m P polog
give cally conjugate taV,(w)® via 4 Y(w, k) = , Where
PACr(w) f*(w)} = E[Cr]f*(w). (11) N, k) is the inverse function of the elliptic integral of the
first kind in the Legendre-Jacobi normal form

cn Hw.,k)

Equation(11) implies CSP af7(w) holds, which guar-
antees thalCr (7" (w))};, is a sequence of i.i.d. binary ran-

dt (14)

dom variables. Binary expansion is a typical example of

symmetric binary functions.

1
= f .
cn(w.k) \/(1 — t2)(1 -2+ k2t2)

We know R{(w,k) satisfies semi-group property

Figure 1 shows examples of symmetric binary functiorkcn(ch(w k), k) = R%(w, k) for integers, s.
Cr(w) and Figure 2 illustrates a sequence generator OrWhenp = 2, equation(12) gives the rational map

i.i.d. binary random variables using chaotic dynamics.

1@,(w) is the threshold function such that

0 forw<t
1 forw=>t.

0,(w) = {

1-2(1- w?) + k(1 - w?)?
1- k(1 - w?)?
2Katsura and Fukuda [2] gave a rational function version of logistic

map which were studied by Scider [3] in 1871.
3Np(w) = (-1)"“)pw (Mod p), w €[0,1]

(15)

R (w, k) =
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R(w)— Xn —qun(x”’k) 1 > Xpi1

f(@)-
@ Yo
= =
) ] Figure 5: Generator of 2-d chaotic real-valued sequences
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Figure 3:R5"(w, 0.5) and its ACl measurg (w, 0.5)
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Figure 6: Marginal distributiong;dx and f;dy (k = 0.1)
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0
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= —i _ k2 2,2
Figure 4: Stable invariant curvex € 0.5) Whereﬂ(?@nl) = \/(1 X)L -k + ke xn+l): o
Equations(17) and (19) can be schematized in Figure 5.

4.2. Marginal distributions

) Marginal distributions ofc andy appear in Figure 6 (a)
(@) = (1-)(1- K2+ 122, (16) and (b), respectively. As these figures indicate, it is clear
du that experimental data is quite well reproduced by theory.
Let x, = CNuy, uye1 = 2u,. Then we can get 2-dimensional In Figure 6(a), theoretical distribution afis given by
equation(13). This is represented by integrand of the in-

Transformationc = chu gives

sequencef{(x,, y,)I>,, defined as ) _
g &yl verse function cnt u (equation(14)).
X1 = RG(x,, k) For reasons mentioned just now, we define inverse func-
C1-2(1-x2) + k(1 - 22 tion of 262 = — snu dnu as
1-k2(1-x2)? ’
2 " an 0
Vo= (E dxm) = f V2k dr. (20)
2 du - shéu.£) dnfrk) \/(2k2 -1+ V1-4k22)(1 - 4k2)

= (L= (RS (s )DL = K + K (RS (x,, K))°).
This implies theoretical marginal distribution pis given

4. Generator of 2-dimensional i.i.d. random variables  PY integrand of equation(20).

In this paper, we are not concerned with the case 4.3. Binary function

V1/2. . . .
/ In this section, we need to remind ourselves of symmet-
4.1. 2-dimensional chaotic sequences ric properties mentiond iftheorem 1

First, as Figure 3 indicateR;" and its ACl measure sat-

As we reported in the previous study, 2-dimensional Jasfy equation(9) and (10) respectively. Therefore, we can
cobian elliptic Chebyshev rational map has a stable invari-

ant curve which is written by .
F 1M 7=
Y2 = (1-X2)(1 - k2 + k2X?). (18) I NN 2 .......
We show the stable invariant curve in Figure 4.
In section 3,1 is given completely. On the other hand, I
equation(17) gives only calculation of,,. The value of i P Al il
u,,1 determineg,,1 as follows: - 5); ! 1 )0, !

—7T(X,H_1), 0< Up+1 mod ‘v{(k) < ZK(k) )
Vel = (19) Figure 7:y,.1 = 7,(v,)  Figure 8:77(»,) andz (y,)

m(xn11), Otherwise
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get sequences of i.i.d. binary random variables by using LN , v
symmetric binary functio’s, (-) with the set of thresholds * ;(_1) $(@ ) ) Oy~ 1o 5y (tZM"'))}
T, associated with a sequenog}” . f o)

One the other hand, relation betwegrandy,.1 has fig- Y "5 @) {Orp) = Pr, (1 000)))
ure of eight as shown in Figure 7, which does not define a N f;(y)

one-to-one map,.1 = 7(y,). However it is represented by 2= (1Y@ ) ) Oy = o7 (1a1))]
() = Tf(yn) forx, >0 21) =0
o ™) = -t0,)  forx, <0 Therefore, equation(23) holds. This completes the proof.
Equation(23) guarantees thdtr, (v,)},, is a sequence of
) zmym{ 12 1 (242 — 1)m} ii.d. bin_ary random v_ariables. It follows from what has
»0) = @ 1122 s mz been said that each binary expansion of real-vajuggf

and{y, ives i.i.d. random variables.
wherer”( ) andrN( -) are shown by solid and broken curves Wil @

respectlvely in F|gure 8. Then, symmetric binary function lusi
Cr,(-) with the set of threshold), associated with a se- 5. Conclusion

quencely, };Z, satisfies Jacobian elliptic Chebyshev rational map and its deriva-

_ tive are governed by Abelianfiiérential equation and give
PrACr, 00/ 0D} = BICT1/70): (23) 2-dimensional map. For < /1/2, real-valued sequences
Before turning to the proof, we introduce generated by the map have been proven to produce 2-
dimensional i.i.d. binary random vectors. Here we limited
Lemmal [5] the discussion té < v1/2. Fork > v1/2, details will be

For the piecewise-monotonic onto map map$sat- taken up in the next paper.
isfying equation(3), we can get

P A(0;(w) — p-(0))f (w)} References
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