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Abstract—A decomposition learning method for sup-efficiently. In what follows, we first explain the problem
port vector regression is proposed. This method is baséarmulation of SVR. We next introduce the SMO algorithm
on the algorithm proposed by Flake and Lawrence but dief Flake and Lawrence. We then describe our method in
tinguished from it by the following properties: 1) the sizedetail and finally show some experimental results.
of subproblems is not restricted to two but can be any even .
number, 2) working set is determined in a systematic wayg. Support Vector Regression
3) subproblems are in the form of QP problems and there-
fore can be solvedficiently. Hficiency of the proposed
method is shown via computer simulations.

Let us consider a pair of variablesandy such that the
dependence of on x is expressed as

y=f(X)+v

1. Introduction . . . .
where f(-) is an unknown nonlinear function andis a

Recently support vector machines (SVMs) have afdoise independent.of yvhose yalue and distribution are
tracted great attention in the field of pattern classificatioi"known. Regression is to estimate the unknown function
due to their high generalization property. Learning of arf () from the given samplesx(,y1), (x2,¥2).. .., (xi.%1)
SVM leads to a convex quadratic programming (QP) proﬁuherexi is theith sample of t_he variablg andy; the ob-
lem with| variables wheréis the number of training sam- Served value ol corresponding tox. Thesel samples
ples. Hence the computation time increases rapidly ag(X-¥)}i_, are referred to as the training samples.
glows. To overcome this fliculty, some algorithms known ~ SVR is a technique to solve regression problems by
as decomposition methods have been proposed [1, 2]. BR&ans of SVMs. For the given training sampies, yi_)}::l'
sic strategy common to all decomposition methods is to try VR 1eads to the following quadratic programming (QP)
to find an optimal solution of the original QP problem byproblem (for more details on derivation of Problem 1 see
solving relatively small QP subproblems iterativelyfie [4] for example).
ciency of the decomposition methods has been verified oblem 1 Find {ai)l_, and {a})l_, that minimize the ob-
many computer simulations. jective function

The basic idea of SVMs can also be applied to nonlinear
regression problems. This technique is known as support ! !
vector regression (SVR). Learning of an SVM in SVR is Q@ @) = - ZYi(m —aj) + EZ(ai + )
formulated as a QP problem as in the pattern classification =1 =1

. . o L
case, but the number of variables in the QP problemis twice 1 , ,
the number of training samples. Therefore mofecient t3. Z(ai —a)(ej - @)K x)) (1)
. . o i=1 j=1
learning algorithm than the usual decomposition methods
is required for SVR. subject to the constraints:
Flake and Lawrence [3] have recently proposed an SVM |
learning algorithm for regression. Many numerical results Z(ai ~))=0 2)
have shown that their method can yield dramatic runtime o1
improvements. However, since it is based on the sequen- 0<a;<C, i=12--.I 3)

tial minimal optimization (SMO) algorithm of Platt [1], the . _
size of subproblems is restricted to two. 0<ai<C, =12 (4)
In this paper, a new decomposition learning algorithmvheree andC are user-specified parameters.
for SVR is presented. Our algorithm is a generalization . . . .
of the SMO algorithm by Flake and Lawrence [3] and has F_un(_:t|onK(~, ) |,n Eq.(l_)_ls called a kernel. Any function
atisfying Mercer’s condition [4] can be used as a kernel for

the following properties: 1) the size of subproblems is no% . .
restricted to two but can be any even number, 2) workin VMs, but the Gaussian kernel described by
X — x’|2)

set is determined in a systematic way, 3) subproblems are
in the form of QP problems and therefore can be solved 202

K(x,x") = exp(—
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whereo is a positive number specified by users and thd. Proposed Method

polynomial kernel described by ) _ N
In this section, we present a decomposition method for

K(x,x) = (1+x"x)P solving Problem 2. As mentioned before, decomposition

methods are iterative algorithms. In each iteratigz 1)

wherep is a positive integer specified by users are mosj, japles are chosen for updating and then the subproblem
W_"?'e'y used. qu any kernetl_(-, ) satisfying Me_rcers_c_on- with respect to thesq variables are solved. This process
dition, the matrixK = [kij] with kj = K(xi, X;) is positive s reneated until a certain criterion is satisfied. Therefore
semi-definite. This means that Problem 1 is a convex any decomposition method is characterized by 1) how to
problem and therefore does not have local minima. chooseq variables for updating, 2) how to solve subprob-
Let (@1,....@,d,,...,aj) be any optimal solution of |omq \yithq variables and 3) how to set the termination cri-
Problem 1. Then the approximating functib(x) derived terion. In the following, we will show details of our method

by SVR can be expressed as according to this characterization.

! . 4.1. Working Set Selection
FO) = D (@ - a))K(x, x) +b. (5) N
i-1 Convergence rate of a decomposition method strongly
depends on how to choosgvariables for the working set
3. SMO algorithm for SVR in each iteration. The set ofselected variables are usually
called the working set. We want to choogeariables so
As shown in Problem 1, in order to solve a regressiothat the objective functiokV(8) decreases most rapidly by
problem with| training Samples{(xi,yi)}!zl by means of updating those variables. For this purpose, we make use of
SVR, a QP problem with [2variables have to be solved. Taylor expansion of the objective functithi(s). Lete be
Sincel is very large in general, it is required to develdf-e the unit vector such that théh element is one and others
cient methods for solving large QP problems in the form ofire all zero. Then for any fiiciently smalll dimensional
Problem 1. Flake and Lawrence [3] have recently proposetctor d = [dy,do,...,d]" we have from the first order
an dficient method of solving Problem 1 based on the SMJaylor expansion that
algorithm [_1]. A key idea of_th_eir method is to transf_orm W(B + d) ~ W(B) + ga(B)Td
Problem 1 into a convex optimization problem withari- ) . ) _ _
ables in the following way: First it follows from the KKT Where gq(8) is anl dimensional vector of which thih
condition that any optimal solutiofi;}_, and{a";)l_, of ~€lementis defined by

Problem 1 satisfies;&/ = O fori = 1,2,...,1. Hence if

1 L SAHSTR o € limj_q, WERQWE it g >0
we putgi = ai — @] thena; + & can be expressed . (94(B))i = { limy_o WBHEWE) it § <0 (9)
Moreoverg; satisfies-C < g; < C. Therefore{/fi}:=l is 0 ° , if d=0
an optimal solution of the following optimization problem o - ) ) '
with | variablessy, 8, . .., Bi. Substituting (6) into the right-hand side of (9), we have
) L I h*(B), if gi>0 or (B =0 andd > 0)
Problem 2 Find {3}_, that minimize the objective func- I .
tion Pl ’ (9aB))i =< h7(B), if <0 or (B =0andd <0)
0, if d=0
[ [ [
1 here
W(B)=- ) ViBi+e ) IBil+5 BiBiK(xi,x;) (6) W . :
; ; 221]; hE(B) = —yi = e+ D K04 X)) B, (10)
=1

subject to the constraints: Our strategy is to find the vectarsuch thatgy(8)" d is

minimized under the constraints: 1) the number of nonzero

|
Z,Bi =0 (7) elements ind is g, and 2)8 + d belongs to the feasible
i=1 region of Problem 2. This is based on the working set se-
C<B<C i=12- (8) lection method employed in SV [2] and formulated as

the following optimization problem.
Note that the objective functiowW/(B) is convex because
the second terra Z!:l |Bi| is convex with respegB. This
means Problem 2 has no local minima. Note also that the 9a(B)" d
approximating function (5) can be expressed with the optjjnder the constraints:
mal solution{s;}|_, or Problem 2 as follows:

Problem 3 Find d that minimizes the objective function

2:=1di=0
L R d>0if i=-C, d<0if ;=C, i=12...,1
F(¥) = ) BiK(x.x) +b. diidh # O} =g, i=12...,]
i=1 -l<d<l i=12...,l
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As an systematic way of solving Problem 3, we proposBroblem 5 Find {8i}icg that minimizes
the following algorithm.

Algorithm 1: Given a vectoiB belonging to the feasible W(Bg) = - Zyiﬁi + EZ SBi

region of Problem 2 and an even numlggrexecute the ieB ieB
following procedures. 1
P +5 0, D BBIKXLX) + D > BB (xi,x))
1. Setd=0,k=0,m=0andn=1+1. i€B jeB icB jgB
2. Sort the elements af(8) and g_1(8) in the decreas- Under the constraints:
ing order as follows:
? Z,Bi = Zﬁf"d
(AB))i = (0B))i, = -+ = (9 (B)); '8 <6
(9-28)i, = (9-1(B))j, = -+~ = (9-1(B));, Li<Bi<U, VieB
wherel =[1,1,...,1]". wheres, Lj andU; are constants determined by
3. Increasenone by one untipj, > -Corm=1+1is (s,Li,Up) =

satisfied. Decreaseone by one untjp;, <Corn=0 old old
is satisfied. If eithem = | +1 orn = 0 is satisfied then { (1,0,€), 'Biom >0 or (ﬁiold =0 andd = 1)
stop, otherwise goto Step 4. (-1.-C.0), g <0 or (57°=0 and di = -1)

4. 1f =(g_1(8))i,, + (qa(B))j, < O then add 2 td and set In Problem 5, the range of each varialglés restricted

d;, = —1 andd;, = 1. to either [-C, 0] or [0, C] depending on the values gfand
" ! di. This means the search region Br}icg in Problem 5
5. If k = gthen stop, otherwise goto Step 3. is much smaller than that in Problem 4. However, due to

this restriction, Problem 5 can be expressed as a QP prob-
Unfortunately we have not proved yet the vectbob- P QP p

. . . X ) lem. Since QP problems can be solved veficently with
tained by A_Igonthm 1 is an optimal solution of Probl_em 3‘many software such as MATLAB. Scilab and so on, com-

f)'i.ltation time required for solving Problem 5 is expected to

cases, we choogpvariables corresponding to nonzero elebe much shorter than Problem 4

ments ofd obtained by Algorithm 1 for the working set.
4.2. Subproblem

Letgold =[5!, g3, .., BT be the present value gf

4.3. Termination Criterion

By exploring the KKT condition for Problem 1, we can
- ! . od easily derive the optimality condition for Problem 2. It fol-
d the vector obtained by Algorithm 1 f@ = g°¢, andB = 5,5 from the KKT condition thatd, . . ., a, a,...,a)is
fild # 0} the working set. Then the problem to minimizea, gptimal solution of Problem 1 if and only if there exist
W(B) under the constraints (7), (8) ad = ' for all  jeq (jlowyl 3UP (ylowyl ang 1Pyl such that the
! 1 | | 1

i ¢ Bis formulated as follows: following conditions hold. =1

Problem 4 Find {8i}icg that minimizes Lyi+e+ Z.1.21(0[1_ 3 oz])Ki,- 4+ 89 /1!0W N /liup -0

1 yi+€— Soy(@) — a)Kij = 29— 1+ 1P = 0
W(Bg) = - Z YiBi + 62 Bil + 5 Z ZﬁiﬁjK(Xi, Xj) Alow AP rlow yP >
ieB ieB ieB jeB Af!ow(_ai) — 0’ /liuP(C _ ai) =0
£ BBYIK(xi, X)) o) =0, V*(C-a])=0
ieB j¢B
whereK(x;, x;) is denoted by;; for simplicity. The above
under the constraints: conditions can be expressed more simply as follows:
Z Bi = Z pov 1) A% = 4" = 0 andy; — e - 3\ (e — @))Kij = A%0if
icB icB O<aj<C andai' =0
-1<p <1 VieB 2) AoV =" =0andy +e- lezl(cxj —@))Kij = 2%9if

i i i i=0and0O< ] <C.
Since Problem 4 has only variables, it can be solved @ <@ <

much faster than Problem 2. However, it is still not easy 3) gl — 0 andy; — e - lezl(aj - ))Kij 2 %if a; = C
to solve Problem 4 due to the absolute value function con-  gnda’ = 0.

tained inW(Bg). In order to avoid this diiculty, we em- '

ploy the following optimization problem as a subproblem 4) /li"o‘” =0andy; +e- le:l(a’j - a,j)Kij <A%ifq; =0
instead of Problem 4. ande; = C.

707



B) AW = U = 0,y; — € — lezl(a/j - a})Kij < A®9and 160 —

Vi +€— lezl(aj - a"j)Kij > A%if @5 = a; = 0. 140 F conF\)/r%r;JtLOSr:eeal V.

Substitutings; = a; — of into the above equations and g 120 |
reorganizing the conditions, we derive the optimality con- g 100 F ’
dition for Problem 2 as follows: 5 eor o

o /X,/'/ i
hi(B) < —1%¢, if g=C o or e
hrr(ﬁ) = _/leq’ if O <ﬁi <C 40 ;%)%(;/X'/X//X .
hl—(ﬁ) < —)8d < hl‘*‘(ﬂ)’ if ﬁi =0 20 1 1 1 1 1 1 1 1 1
h-(8) = -1, if —C<pB <0 0 10 20 30 40 50 60 70 80 90 100
hr(B) = -1, if g=-C q
. . Figure 1: CPU time spent by the proposed and conventional
whereh(B) is defined by (10). methods fott = 500.
5. Simulations 500 — T T T T T
450 L conventiona(\jl —t
. roposed ---X---

To test the #iciency of the proposed method we have 400 prop .
considered a regression problem such that the training sam- g 350 |- T
ples{(xi,yi)}::l are generated by the following equation: ‘aET 228 i ]

sinx; § 200 T
Yi= ——+v (dn<x<4n), i=12...1 o 150 | 4
Xi 100 =
50 | -
where the noise is Gaussian with zero mean and variance 0 = e N R R S B

100 200 300 400 500 600 700 800 9001000

0.01. For many values dfandq, we have measured the
The number of samples

CPU time required for the proposed method and compared
it with the conventional one where Problem 1 is solved byigyre 2: CPU time spent by the proposed and conventional
using SVM9" algorithm [2]. Both methods were imple- methods for = 40.

mented in Scilab [5] and executed on a PC with 1.2GHz
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