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Abstract—A decomposition learning method for sup-
port vector regression is proposed. This method is based
on the algorithm proposed by Flake and Lawrence but dis-
tinguished from it by the following properties: 1) the size
of subproblems is not restricted to two but can be any even
number, 2) working set is determined in a systematic way,
3) subproblems are in the form of QP problems and there-
fore can be solved efficiently. Efficiency of the proposed
method is shown via computer simulations.

1. Introduction

Recently support vector machines (SVMs) have at-
tracted great attention in the field of pattern classification
due to their high generalization property. Learning of an
SVM leads to a convex quadratic programming (QP) prob-
lem with l variables wherel is the number of training sam-
ples. Hence the computation time increases rapidly asl
glows. To overcome this difficulty, some algorithms known
as decomposition methods have been proposed [1, 2]. Ba-
sic strategy common to all decomposition methods is to try
to find an optimal solution of the original QP problem by
solving relatively small QP subproblems iteratively. Effi-
ciency of the decomposition methods has been verified by
many computer simulations.

The basic idea of SVMs can also be applied to nonlinear
regression problems. This technique is known as support
vector regression (SVR). Learning of an SVM in SVR is
formulated as a QP problem as in the pattern classification
case, but the number of variables in the QP problem is twice
the number of training samples. Therefore more efficient
learning algorithm than the usual decomposition methods
is required for SVR.

Flake and Lawrence [3] have recently proposed an SVM
learning algorithm for regression. Many numerical results
have shown that their method can yield dramatic runtime
improvements. However, since it is based on the sequen-
tial minimal optimization (SMO) algorithm of Platt [1], the
size of subproblems is restricted to two.

In this paper, a new decomposition learning algorithm
for SVR is presented. Our algorithm is a generalization
of the SMO algorithm by Flake and Lawrence [3] and has
the following properties: 1) the size of subproblems is not
restricted to two but can be any even number, 2) working
set is determined in a systematic way, 3) subproblems are
in the form of QP problems and therefore can be solved

efficiently. In what follows, we first explain the problem
formulation of SVR. We next introduce the SMO algorithm
of Flake and Lawrence. We then describe our method in
detail and finally show some experimental results.

2. Support Vector Regression

Let us consider a pair of variablesx andy such that the
dependence ofy on x is expressed as

y = f (x) + ν

where f (·) is an unknown nonlinear function andν is a
noise independent ofx whose value and distribution are
unknown. Regression is to estimate the unknown function
f (·) from the given samples (x1, y1), (x2, y2), . . . , (xl , yl)
wherexi is the ith sample of the variablex andyi the ob-
served value ofy corresponding toxi . Thesel samples
{(xi , yi)}li=1 are referred to as the training samples.

SVR is a technique to solve regression problems by
means of SVMs. For the given training samples{(xi , yi)}li=1,
SVR leads to the following quadratic programming (QP)
problem (for more details on derivation of Problem 1 see
[4] for example).

Problem 1 Find {αi}li=1 and {α′i }li=1 that minimize the ob-
jective function

Q(α,α′) = −
l∑

i=1

yi(αi − α′i ) + ε

l∑

i=1

(αi + α′i )

+
1
2

l∑

i=1

l∑

j=1

(αi − α′i )(α j − α′j)K(xi , x j) (1)

subject to the constraints:

l∑

i=1

(αi − α′i ) = 0 (2)

0 ≤ αi ≤ C, i = 1,2, · · · , l (3)

0 ≤ α′i ≤ C, i = 1,2, · · · , l (4)

whereε andC are user-specified parameters.

FunctionK(·, ·) in Eq.(1) is called a kernel. Any function
satisfying Mercer’s condition [4] can be used as a kernel for
SVMs, but the Gaussian kernel described by

K(x, x′) = exp

(
−|x − x′|2

2σ2

)
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whereσ is a positive number specified by users and the
polynomial kernel described by

K(x, x′) = (1 + xT x′)p

where p is a positive integer specified by users are most
widely used. For any kernelK(·, ·) satisfying Mercer’s con-
dition, the matrixK = [ki j ] with ki j = K(xi , x j) is positive
semi-definite. This means that Problem 1 is a convex QP
problem and therefore does not have local minima.

Let (α̂1, . . . , α̂l , α̂
′
1, . . . , α̂

′
l ) be any optimal solution of

Problem 1. Then the approximating functionF(x) derived
by SVR can be expressed as

F(x) =

l∑

i=1

(α̂i − α̂′i )K(xi , x) + b̂. (5)

3. SMO algorithm for SVR

As shown in Problem 1, in order to solve a regression
problem with l training samples{(xi , yi)}li=1 by means of
SVR, a QP problem with 2l variables have to be solved.
Sincel is very large in general, it is required to develop effi-
cient methods for solving large QP problems in the form of
Problem 1. Flake and Lawrence [3] have recently proposed
an efficient method of solving Problem 1 based on the SMO
algorithm [1]. A key idea of their method is to transform
Problem 1 into a convex optimization problem withl vari-
ables in the following way: First it follows from the KKT
condition that any optimal solution{α̂i}li=1 and {α̂′ i}li=1 of
Problem 1 satisfies ˆαi α̂

′
i = 0 for i = 1,2, . . . , l. Hence if

we put β̂i = α̂i − α̂′i then α̂i + α̂′i can be expressed as|β̂i |.
Moreoverβ̂i satisfies−C ≤ β̂i ≤ C. Therefore{β̂i}li=1 is
an optimal solution of the following optimization problem
with l variablesβ1, β2, . . . , βl .

Problem 2 Find {βi}li=1 that minimize the objective func-
tion

W(β) = −
l∑

i=1

yiβi + ε

l∑

i=1

|βi |+ 1
2

l∑

i=1

l∑

j=1

βiβ jK(xi , x j) (6)

subject to the constraints:

l∑

i=1

βi = 0 (7)

−C ≤ βi ≤ C, i = 1,2, · · · , l (8)

Note that the objective functionW(β) is convex because
the second termε

∑l
i=1 |βi | is convex with respectβ. This

means Problem 2 has no local minima. Note also that the
approximating function (5) can be expressed with the opti-
mal solution{β̂i}li=1 or Problem 2 as follows:

F(x) =

l∑

i=1

β̂iK(xi , x) + b̂.

4. Proposed Method

In this section, we present a decomposition method for
solving Problem 2. As mentioned before, decomposition
methods are iterative algorithms. In each iteration,q(≤ l)
variables are chosen for updating and then the subproblem
with respect to theseq variables are solved. This process
is repeated until a certain criterion is satisfied. Therefore
any decomposition method is characterized by 1) how to
chooseq variables for updating, 2) how to solve subprob-
lems withq variables and 3) how to set the termination cri-
terion. In the following, we will show details of our method
according to this characterization.

4.1. Working Set Selection

Convergence rate of a decomposition method strongly
depends on how to chooseq variables for the working set
in each iteration. The set ofq selected variables are usually
called the working set. We want to chooseq variables so
that the objective functionW(β) decreases most rapidly by
updating those variables. For this purpose, we make use of
Taylor expansion of the objective functionW(β). Let ei be
the unit vector such that theith element is one and others
are all zero. Then for any sufficiently smalll dimensional
vector d = [d1,d2, . . . , dl ]T we have from the first order
Taylor expansion that

W(β + d) ≈W(β) + gd(β)T d

where gd(β) is an l dimensional vector of which theith
element is defined by

(gd(β))i =



limδ→0+
W(β+δei )−W(β)

δ
, if di > 0

limδ→0−
W(β+δei )−W(β)

δ
, if di < 0

0, if di = 0
(9)

Substituting (6) into the right-hand side of (9), we have

(gd(β))i =


h+

i (β), if βi > 0 or (βi = 0 anddi > 0)
h−i (β), if βi < 0 or (βi = 0 anddi < 0)
0, if di = 0

where
h±i (β) = −yi ± ε +

l∑

j=1

K(xi , x j) β j . (10)

Our strategy is to find the vectord such thatgd(β)T d is
minimized under the constraints: 1) the number of nonzero
elements ind is q, and 2)β + d belongs to the feasible
region of Problem 2. This is based on the working set se-
lection method employed in SVMlight [2] and formulated as
the following optimization problem.

Problem 3 Find d that minimizes the objective function

gd(β)T d

under the constraints:∑l
i=1 di = 0

di ≥ 0 if βi = −C, di ≤ 0 if βi = C, i = 1,2, . . . , l
|{di |di , 0}| = q, i = 1,2, . . . , l
−1 ≤ di ≤ 1, i = 1,2, . . . , l
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As an systematic way of solving Problem 3, we propose
the following algorithm.

Algorithm 1: Given a vectorβ belonging to the feasible
region of Problem 2 and an even numberq, execute the
following procedures.

1. Setd = 0, k = 0, m = 0 andn = l + 1.

2. Sort the elements ofg1(β) and g−1(β) in the decreas-
ing order as follows:

(g1(β))i1 ≥ (g1(β))i2 ≥ · · · ≥ (g1(β))i l
(g−1(β)) j1 ≥ (g−1(β)) j2 ≥ · · · ≥ (g−1(β)) j l

where1 = [1,1, . . . , 1]T .

3. Increasem one by one untilβim > −C or m = l + 1 is
satisfied. Decreasen one by one untilβ jn < C or n = 0
is satisfied. If eitherm = l +1 orn = 0 is satisfied then
stop, otherwise goto Step 4.

4. If −(g−1(β))im + (g1(β)) jn < 0 then add 2 tok and set
dim = −1 andd jn = 1.

5. If k = q then stop, otherwise goto Step 3.

Unfortunately we have not proved yet the vectord ob-
tained by Algorithm 1 is an optimal solution of Problem 3.
However, since our algorithm gives us good results in most
cases, we chooseq variables corresponding to nonzero ele-
ments ofd obtained by Algorithm 1 for the working set.

4.2. Subproblem

Letβold = [βold
1 , βold

2 , . . . , βold
l ]T be the present value ofβ,

d̂ the vector obtained by Algorithm 1 forβ = βold, andB =

{i | d̂i , 0} the working set. Then the problem to minimize
W(β) under the constraints (7), (8) andβi = βold

i for all
i < B is formulated as follows:

Problem 4 Find {βi}i∈B that minimizes

W(βB) = −
∑

i∈B
yiβi + ε

∑

i∈B
|βi | + 1

2

∑

i∈B

∑

j∈B
βiβ jK(xi , x j)

+
∑

i∈B

∑

j<B

βiβ
old
j K(xi , x j)

under the constraints:
∑

i∈B
βi =

∑

i∈B
βold

i

−1 ≤ βi ≤ 1, ∀i ∈ B

Since Problem 4 has onlyq variables, it can be solved
much faster than Problem 2. However, it is still not easy
to solve Problem 4 due to the absolute value function con-
tained inW(βB). In order to avoid this difficulty, we em-
ploy the following optimization problem as a subproblem
instead of Problem 4.

Problem 5 Find {βi}i∈B that minimizes

W̃(βB) = −
∑

i∈B
yiβi + ε

∑

i∈B
siβi

+
1
2

∑

i∈B

∑

j∈B
βiβ jK(xi , x j) +

∑

i∈B

∑

j<B

βiβ
old
j K(xi , x j)

under the constraints:
∑

i∈B
βi =

∑

i∈B
βold

i

Li ≤ βi ≤ Ui , ∀i ∈ B

wheresi , Li andUi are constants determined by

(si , Li ,Ui) ={
(1,0,C), βold

i > 0 or (βold
i = 0 anddi = 1)

(−1,−C,0), βold
i < 0 or (βold

i = 0 and di = −1)

In Problem 5, the range of each variableβi is restricted
to either [−C,0] or [0,C] depending on the values ofβi and
d̂i . This means the search region for{βi}i∈B in Problem 5
is much smaller than that in Problem 4. However, due to
this restriction, Problem 5 can be expressed as a QP prob-
lem. Since QP problems can be solved very efficiently with
many software such as MATLAB, Scilab and so on, com-
putation time required for solving Problem 5 is expected to
be much shorter than Problem 4.

4.3. Termination Criterion

By exploring the KKT condition for Problem 1, we can
easily derive the optimality condition for Problem 2. It fol-
lows from the KKT condition that (α1, . . . , αl , α

′
1, . . . , α

′
l ) is

an optimal solution of Problem 1 if and only if there exist
λeq, {λlow

i }li=1, {λup
i }li=1, {λ′low

i }li=1 and{λ′up
i }li=1 such that the

following conditions hold.

−yi + ε +
∑l

j=1(α j − α′j)Ki j + λeq− λlow
i + λ

up
i = 0

yi + ε −∑l
j=1(α j − α′j)Ki j − λeq− λ′low

i + λ
′up
i = 0

λlow
i , λ

up
i , λ

′low
i , λ

′up
i ≥ 0

λlow
i (−αi) = 0, λ

up
i (C − αi) = 0

λ′low
i (−α′i ) = 0, λ

′up
i (C − α′i ) = 0

whereK(xi , x j) is denoted byKi j for simplicity. The above
conditions can be expressed more simply as follows:

1) λlow
i = λ

up
i = 0 andyi − ε −∑l

j=1(α j − α′j)Ki j = λeq if
0 < αi < C andα′i = 0

2) λ′low
i = λ

′up
i = 0 andyi + ε −∑l

j=1(α j − α′j)Ki j = λeq if
αi = 0 and 0< α′i < C.

3) λlow
i = 0 andyi − ε −∑l

j=1(α j − α′j)Ki j ≥ λeq if αi = C
andα′i = 0.

4) λ′low
i = 0 andyi + ε −∑l

j=1(α j − α′j)Ki j ≤ λeq if αi = 0
andα′i = C.
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5) λlow = λup = 0, yi − ε − ∑l
j=1(α j − α′j)Ki j ≤ λeq and

yi + ε −∑l
j=1(α j − α′j)Ki j ≥ λeq if αi = α′i = 0.

Substitutingβi = αi − α′i into the above equations and
reorganizing the conditions, we derive the optimality con-
dition for Problem 2 as follows:



h+
i (β) ≤ −λeq, if βi = C

h+
i (β) = −λeq, if 0 < βi < C

h−i (β) ≤ −λeq ≤ h+
i (β), if βi = 0

h−i (β) = −λeq, if −C < βi < 0
h−i (β) ≥ −λeq, if βi = −C

whereh±i (β) is defined by (10).

5. Simulations

To test the efficiency of the proposed method we have
considered a regression problem such that the training sam-
ples{(xi , yi)}li=1 are generated by the following equation:

yi =
sinxi

xi
+ ν (−4π ≤ xi ≤ 4π), i = 1,2, . . . , l

where the noiseν is Gaussian with zero mean and variance
0.01. For many values ofl andq, we have measured the
CPU time required for the proposed method and compared
it with the conventional one where Problem 1 is solved by
using SVMlight algorithm [2]. Both methods were imple-
mented in Scilab [5] and executed on a PC with 1.2GHz
Pentium III processor and 256MB RAM. Kernel function
and parameters used in our experiments are as follows:

K(x, y) = exp(−|x− y|2), ε = 0.05, C = 1

Figure 1 shows the CPU time spent by the proposed and
conventional methods for various values ofqunder the con-
dition that l is fixed to 500. Results were obtained by av-
eraging over 10 trials for each value ofq. It is easily seen
from Fig.1 that the proposed method is much faster than the
conventional method for all values ofq. It is also seen that
the minimum is achieved atq = 40 for the comventional
method andq = 10 for the proposed method. On the other
hand, Fig.2 shows the CPU time spent by the proposed and
conventional method for various values ofl under the con-
dition thatq is fixed to 40. It is seen from this figure that
the proposed method is much faster than the conventional
method for all values ofl. Moreover, we confirmed that
both algorithms converged to the solution of the same qual-
ity.

6. Conclusion

We have proposed a new decomposition learning algo-
rithm for SVR. Experimental results show that the pro-
posed method is much faster than the conventional method.
Theoretical analysis of the convergence property of the pro-
posed method is one of the future problems.
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methods forl = 500.
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