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Abstract—This paper presents a novel learning al-
gorithm for the binary neural network that has the
unit step activation function. The remarkable prop-
erties are binary weight vectors in the hidden layer
and fault-containment. As teacher signals are given
from a Boolean function, our algorithm determines
hidden neurons based on the genetic algorithm where
the chromosomes correspond to the binary weight vec-
tors of hidden layer and the fitness corresponds to
the number of separated teacher signals. The fault-
containment is effective to reduce the rate of hidden
neurons and smart BNNs can be synthesized.

1. Introduction

The binary neural network (ab. BNN) is a simple
feed-forward network whose activation is represented
by the unit step function [1]-[4]. The BNN can ap-
proximate a desired Boolean function and has many
applications including pattern classification and er-
ror correcting codes [5] [6]. In order to synthesize
the BNN, there exit several supervised learning al-
gorithms including expand-and-truncate learning (ab.
ETL) based on geometrical structure of teacher sig-
nal space [2]. The ETL and its improved version [?]
are much simpler than the back-propagation algorithm
that is not suitable for the BNN but for smooth feed
forward networks.

This paper presents a novel learning algorithm (ab.
FCLA) for the BNN: the remarkable properties are
binary weight vectors in the hidden layer and fault-
containment. As teacher signals are given from a
Boolean function, the FCLA determines hidden neu-
rons based on the genetic algorithm (ab. GA), where
the chromosomes correspond to the binary weight vec-
tors and the fitness corresponds to the rate of sep-
arated teacher signals into all signals. We then in-
troduce a fault-containment parameter E in order to
remove a few noisy teacher signals by permitting false
separation. Even though the weight vector is binary,
the fault-containment is effective to reduce the num-
ber of hidden neurons and the FCLA can synthesize
smart BNNs. The efficiency of the FCLA is confirmed
by basic numerical experiments. Note that our pre-
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Figure 1: Three-Layer Binary Neural Networks

vious GA-based algorithm [7] has neither the binary
hidden weighs vectors nor the fault-containment pa-
rameter.

2. Binary Neural Networks

Fig. 1 shows the three-layer binary neural networks
(ab. BNN) that can approximate a desired Boolean
function FB from N -dimensional binary space BN ≡
{0, 1}N to 1-dimensional binary space B ≡ {0, 1}. The
BNN is described by Equation (1).

y = fB(x), FB = BN → B

y = U


 M∑

j=1

W o
j zj − T o




zj = U

(
N∑

i=1

Wh
jixi − Th

j

) (1)

where x = (x1, · · · , xN) ∈ BN is the input vector,
z = (z1, · · · , zM) ∈ BM is the hidden layer output vec-
tor and y ∈ B is the output, where M is the number
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of hidden layer neurons. U is the unit step function

U(X) =
{

1 for X ≥ 0
0 for X < 0

W o = (W o
1 , · · · , W o

M ) is the output weight vector, and
W h

j =
(
Wh

j1, · · · , Wh
jN

)
is the weight vector of the hid-

den layer. In this paper, let Wh
ji ∈ {−1, 1}. This bi-

nary setting of Wh
ji is much simpler than usual integer

setting. T o ∈ Z is the threshold of output layer and
Th

j ∈ Z is the threshold of jth hidden neuron where
Z denotes integers.

3. Learning Algorithm

Our leaning algorithm FCLA determines the hidden
layer parameters W h

j , Th
j and the output layer param-

eters W 0, T 0, which based on teacher signals from a
desired Boolean function FB. Let U = {u1, · · · , uNu}
be a subset of teacher signals such that fB (uj) = 1.
Let V = {v1, · · · , vNv} be a subset of teacher signals
such that fB (vj) = 0. Let uj = {uj1, · · · , ujN} and
vj = {vj1, · · · , vjN}, where uji ∈ B and vji ∈ B.
Since a teacher signal correspond to a vertex of an N -
dimensional hypercube, we then refer to an element
of U ( respectively, V ) as true vertex (respectively,
false vertex). Our algorithm consists of the following
5 steps and one subroutine.

Main routine

STEP 1 : Initialization.
Let j be an index of a hidden neuron and let j = 1.

STEP 2 : Determination of separated hyperplane
Using a GA-based subroutine shown afterward,
we determine j-th separated hyperplane (ab.
SHP) corresponding to the j-th hidden neuron.
The j-th SHP is represented by weight vector
W h

j and threshold of the hidden neuron Th
j . In

the GA-based subroutine, the chromosome cor-
responds to the weight vector W h

j and the fit-
ness Lj corresponds to the rate of true vertices
separated by the jth SHP over all the 2N ver-
tices. The threshold Th

j is determined with the
fitness as shown in the GA-based subroutine. The
SHP can separate true vertices and our algorithm
adopts a fault-containment principle: the SHP
also separate a few noisy false vertices as shown
in Fig. 2. Let E · 2N be the upper limit num-
ber of the false separation. We refer to E as the
fault-containment parameter.

STEP 3 : Inspection of the j-th SHP
If Lj > E then true ( and false ) vertices separated
by the j-th SHP are declared as ”don′t care”, the
jth SHP is adopted and goto STEP 4. If Lj ≤

×

×
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×

×
×

×

×
×

SHP

Figure 2: Separated Hyper Plane (SHP)

E then true vertices separated by the j-th SHP
are declared as ”don′t care”, the jth SHP is not
adopted and go to STEP 4.

STEP 4 :
Let γ be the rate of true vertices over the number
of all vertices 2N . If γ ≤ E then goto STEP 5.
Otherwise, j=j+1 and goto STEP 2.

STEP 5 : Learning the output layer
The output neuron is determined by T o = 1 and
W o

j = 1:

y = U


 M∑

j=1

zj − 1


 =

{
0 if zj = 0 for all j
1 otherwise

That is, the output neuron can approximate the
teacher signals by ”OR” operation of the hidden
neuron outputs. If E = 0, the exact realization of
FB is possible.

GA-based Subroutine
We use a set of chromosomes {C1, · · · , CK} where

Cl=(Cl1 , · · · , ClN ), Cli ∈ {−1, 1}. The l-th chromo-
some Cl corresponds to the lth hidden weight vector
W h

l . For l-th chromosome Cl, we define the following
function to estimate the fitness.

h(x) = U(
N∑

i=1

Clixi − D)

where D is an integer parameter corresponding to the
threshold Th

j . The fitness Lj is the rate of number for
true vertices separated by the hyper plane Cj · x− D
with fault-containment parameter E:

Lj =
#{u|h(u) = 1}

2N
where

#{v|h(v) = 1}
2N

≤ E.
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Table 1: teacher signals

42  true vertices

0000001, 0000010, 0000100, 0000111, 0001000, 0001011

0001101, 0001110, 0010000, 0010001, 0010010, 0010101

0010110, 0011000, 0011011, 0011101, 0011110, 0100000

0100011, 0100101, 0100110, 0101001, 0101010, 0101100

0110100, 0111000, 0111001, 0111010, 0111100, 1000000

1000011, 1000101, 1000110, 1001001, 1001010, 1001100

1010100, 1011001, 1011010, 1011100, 1111001, 1111010

0000000, 0000011, 0000101, 0000110, 0001001, 0001010

0001100, 0010100, 0011001, 0011010, 0011100, 0100111

0101011, 0101101, 0101110, 0101111, 0110101, 0110110

0110111, 0111011, 0111101, 0111110, 1000111, 1001011

1001101, 1001110, 1001111, 1010011, 1010101,  1010110

1010111, 1011000, 1011011, 1011101, 1101000, 1101010

1110000, 1110111, 1111000, 1111011, 1111101, 1111111

42  true vertices

42  true vertices

0000001, 0000010, 0000100, 0000111, 0001000, 0001011

0001101, 0001110, 0010000, 0010001, 0010010, 0010101

0010110, 0011000, 0011011, 0011101, 0011110, 0100000

0100011, 0100101, 0100110, 0101001, 0101010, 0101100

0110100, 0111000, 0111001, 0111010, 0111100, 1000000

1000011, 1000101, 1000110, 1001001, 1001010, 1001100

1010100, 1011001, 1011010, 1011100, 1111001, 1111010

0000000, 0000011, 0000101, 0000110, 0001001, 0001010

0001100, 0010100, 0011001, 0011010, 0011100, 0100111

0101011, 0101101, 0101110, 0101111, 0110101, 0110110

0110111, 0111011, 0111101, 0111110, 1000111, 1001011

1001101, 1001110, 1001111, 1010011, 1010101,  1010110

1010111, 1011000, 1011011, 1011101, 1101000, 1101010

1110000, 1110111, 1111000, 1111011, 1111101, 1111111

42  true vertices

Changing D from −N to N monotonically, we find
a value of D that gives the maximum value of Lj . If
there exist plural values of D which give the maximum
value of Lj we adopt the middle of the maximum and
minimum values: D = 1

2
(Dmax + Dmin). After Each

chromosomes are evaluated by the fitness Lj , we ap-
ply the Elite strategy, roulette selection, single point
crossover with probability Pc and normal mutation
with probability Pm. We repeat such operations until
the maximum generation T .

4. Numerical Experiments

We apply the proposed FCLA to some numerical
experiments, and compare the results to the ETL. In
the numerical experiments, we fix the GA-parameters
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Figure 3: Result by FCLA (E = 0.03)
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Figure 4: Result by ETL
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Figure 5: Role of fault-containment parameter E

as the following after trials and errors.

(Mg, P c, Pm, T ) = (7, 0.7, 0.09, 10)

Experiment 1: A 7-Bit Function.
We apply the FCLA to a 7-bit function F7. Table 1
shows the teacher signals: the number of true vertices
is 42, the number of false vertices is 42, and the re-
mained 44 vertices are ”don’t care”.

Fig. 3 shows an example of the results for E = 0.03:
F7 can be approximated by the BNN having three hid-
den neurons and each weight parameters Wh

ji is 1 or
-1. Fig. 4 shows the result by the ETL: the BNN
has 19 hidden neurons where the weight parameters
Wh

ji take various integer values. Table 2 shows the
results by FCLA for E ∈ {0.00, 0.01} and the result
by ETL. In the table, column AV and SD shows the
average value and standard deviation of the parame-
ters: the hidden weights Wh

ji, output weights W o
j and

hidden thresholds Th
j . The output threshold T o = 1

for all the algorithms. In this table, we can see that
the FCLA can provide much smaller number of hid-
den neurons and much lower SD of parameters than
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Table 2: Comparison of FCLA and ETL

1011.733.140.970.2770.01FCLA

1011.202.670.99- 0.11180.00FCLA

1121213616.89.478.790.2619ETL

SDAVSDAVSDAV

NE

Output LayerHidden Layer

1011.733.140.970.2770.01FCLA

1011.202.670.99- 0.11180.00FCLA

1121213616.89.478.790.2619ETL

SDAVSDAVSDAV

NE

Output LayerHidden Layer

E : Fault ‐ Containment Parameter

N  : hidden neuron’s number
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Figure 6: two spirals

the ETL. Fig. 5 shows characteristic of the number of
hidden layer neurons for fault-containment parameter
E: we can see that E is a suitable selection in this
experiment.

Experiment 2: Two Spirals problem.
The two spirals problems require a highly nonlinear
classification. It is an extremely hard problem [8]. We
then apply the FCLA to teacher signals of two spirals
in Fig. 6. The number of true vertices is 180 and the
number of false vertices is 76. Fig.7 shows the number
of hidden neurons for the fault-containment parameter
E.

5. Conclusions

We have considered a simple learning algorithm for
the BNN. The algorithm has fault-containment and
determines hidden neurons based on GA . Even though
the weight vector is binary, the fault-containment is
effective to reduce the number of hidden neurons and
smart BNNs can be constructed. Future problems in-
clude analysis of learning process, automatic setting
of learning and GA parameters, comparison with other
digital systems and applications to practical problems.
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Figure 7: Role of fault-containment parameter E
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