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 AbstractIn this paper we shall propose a chaos dynamic memory model
applied to  the chaotic autoassociation memory.   The present artificial neuron
model is properly characterized in terms of a time-dependent sinusoidal
activation function to involve a transient chaotic dynamics as well as the
energy steepest descent strategy.   It is elucidated that the present neural
network has a remarkable retrieval ability beyond the conventional models
with  such a monotonous activation function as sigmoidal one.   This
advantage is found to result from the  property of the analogue periodic
mapping accompanied with  a chaotic behaviour of the neurons as well as the
symmetry of the dynamic equation.   
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1. Introduction  

    Tsuda reported some results concerned with dynamics retrieval model,
dynamic linking of associative memories and explored the significance  of
chaos in those dynamics[1,2].   Nara et al. also argued the  memory search
model with a chaos control[3].   So far some applications of the chaotic neural
networks have been investigated  by Aihara et al.[4],  Nakamura and
Nakagawa[5].   In practice, however, as was confirmed by Kasahara and
Nakagawa,[6] the chaotic dynamic association has been found to encounter the
problem such that the complete association of the embedded patterns becomes
inevitably troublesome  if  the loading rate, i.e.     is increased beyond ~0.2
even though the orthogonal learning and the transient chaos are concerned.
Also  the chaotic dynamics with a      monotonous    activation function was
applied to such a combinatorial optimization problem as the Travelling
Salesman Problem (TSP)[6].    They clarified that  a parameter controlled
chaos dynamics,  which is called the transient chaos through the chaos
simulated annealing (CSA), has a capability to realise a more efficient search
of an optimal solution in TSP  beyond the earlier work with fixed parameters.
Thus  chaotic behaviour in neural networks has been considered to play some
important roles so as to find  optimal solutions in the combinatorial
optimization problems.    In contrast to the above-mentioned models with
monotonous activation functions,  the neurodynamics with a nonmonotonous
mapping was recently proposed by Morita[7], Yanai and Amari[8].  They
reported that the nonmonotonous mapping in a neuron dynamics  possesses a

certain advantage of the storage capacity, c ~0.27, superior than the
conventional association models with such a monotonous mapping as the
signum function.     This   finding was explained as a result of an
orthogonalisation process of the apparent synaptic weight matrix as a first
approximation through the nonmonotonous dynamics[8].    That is, they
insist  that  a  nonmonotonous neuron dynamics involves in itself an
approximate one-step orthogonalising process.   Later Shiino and Fukai
analysed the memory capacity for a somewhat simplified step-like
nonmonotonous activation function with the continuous time, and concluded
that the complete association could be realised up to the critical loading rate

c ~0.42[9].  As a related nonmonotonous model,  the present author
proposed a novel neuron model with a periodic activation function to
construct an association model with chaotic dynamics as the discrete time and
orthogonal learning model[10-13].   Therein the storage capacity was found to

be promoted  up to c ~0.35  even in the search mode without any key
information beyond the previously proposed monotonous dynamic model
with the discrete time as was above mentioned.    Recently such a chaotic
dynamics was involved in the synergetic neural network[14] to construct a
chaos synergetic neural network model which involves a competition
dynamics between overlaps[15,16].    In the single layer structure association
model, however, the memory capacity has not been dramatically improved
even by the chaotic neural networks[10-13,17].   Although, in the above-noted
proposed chaos neuron models with a periodic activation function[10-13,17],
the periodicity related to the chaotic dynamics was externally controlled to
drive the system from a chaotic state to a nonchaotic one.    That is, the
scheme of controlling chaos was assumed to be substantially independent  of
the objective chaotic system.  From this viewpoint, an extension of the
external chaos control models was  put forward to elucidate an efficiency of an
autonomous control based on the energy functional[19-22].  In the present
paper,  let us investigate a chaos associative memory (CAM)  model with  the

autocorrelation dynamics  and the statistical property of the present chaos
neuron model. 

2.Theory

     First of all let us define some dynamic rules to construct  a chaotic neural
network  below.   For this  purpose we shall define first the internal state and

the corresponding output  of the i th neuron as i
 and s

i ,  respectively,
which have to be related to each other in  terms of the following  sinusoidal
mapping,

     
s

i
=f (

i
)=sin π

2

i

(1)

    The energy function of the dynamical system with N  neurons may be
defined by   

     E =E
w

 +E
c  ,  (2)

where an objective function, Ew , and a coupling energy function, E
c  are

defined by 

     
E 

w
  =-1

2
∑
i=1

N

∑
j=1

N

w
ij

s
i
s

j
 , (3)

and

     

E
c
 =∑

i=1

N

i
ds

i i

  ,  (4)

respectively;  here w
ij  (1<i,j<N ) are the autocorrelation memory matrix

components corresponding to the interconnection strengths between the ith

and the jth  neurons and assumed to be symmetric, i.e. w
ij

=w
ji  ,

i
(1<i <N  ) are the coupling constants between

i
 (internal state) and s

i
  (output) . As in the conventional autocorrelation

learning  model  with off-diagonal components, w ij   can be  simply defined
by  

  
w

ij
= 1

N 
∑
r=1

L  

e (r)
i

e (r)
j

 -δ
ij

 
  , (5)

where L   is  the number of the embedded pattern vectors  and e
(r)
i (=+1) is

the ith   component  for the rth   embedded pattern, and all the embedded
vectors are assumed to be linearly independent each other.

        Then  the overlaps o (r)   (r=1,2,...,L),  which  are regarded as the pattern
matching  rates,  are to be defined as follows,  

 
o (r) = 1

N 
∑
i=1

N

e (r)
i

 sign s
i

(1<r<L) .  (6)

      Now let us define the dynamics of the present system below.    The time-
dependent Ginzburg-Landau (TDGL) equation of the internal state i  may
be given by  
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D
i

D t
=-

∂E

∂ s
i   ,   (1<i<N ) (7)

where the operator, D•/Dt ,  may be regarded as the forward time difference
operator (for the discrete-time model) or the time differential operator (for the
continuous-time model).      Substituting eq.(2) into eq.(8),  one readily has

     

D
i
(t )

D t 
=-

i i
(t )+∑

j=1

N 

w
ij

s
j
 (t ) 

 . (8)

In the above dynamic equations, the coupling constant  i  is concerned with
the relaxation time of the ith  neuron.  If one resorts on the discrete-time
model under consideration, the difference operator can be replaced as follows,        

  

D
i
(t )

D t 
= i

(t +h )-
i
(t )

h  , (9)

where h  is the time division interval for the t -axis.    Making use of eq.(9),
our dynamic equation (8)  reads

i
(t +h )= 1-

i
h 

i
(t )+h ∑

j=1

N 

w
ij
s

j
(t )

= 1-
i
h 

i
(t )+h *

i
(t )  

(10)

where  * 
i
(t  )  is defined by

       
*

i
(t )=∑

j=1

N 

w
ij
s

j
(t )   

         . (11)

 It should be borne in mind here that  s i
(t )  and 

i
(t )   have to be related each

other in terms of eq.(1), and that     is assumed to be controlled towards   1
at a retrieval point, or a fixed point corresponding to a basin in the N-

dimensional phase space spanned by  s
i
  (1< i<N ).   The symmetry of

eqs.(10) and (11) under s i
(t )→−s

i
(t )    and 

i
(t )→−

i
(t )   may be confirmed

in Fig.1.    This property may play a crucial role for the memory retrieval
since  an unknown component s i (t )   to be retrieved has equal probability
for  s i (t ) >0 or s i (t ) <0.     In Figs.1(a) and (b),  the bifurcation diagram
and the Lyapunov exponent are given for N =1, i=h =1, and i=0, in
which the updating rule can be derived as

 
(t +1)=sin π

2

(t )  =s (t )  
. (12)

For the nonlinear mapping as eq.(12), the Frobenius-Perron equation to
determine the invariant measure p ( ) may be solved as

p =  

-1

1

d δ −sin π
2

p 

   =  2 

π
1

1- 2
∑
n

p 2
π

(-1) n sin -1 +n π
.
(13)

where the summation over n   has to be restricted to
sin -1  −n π <1/      (-1< <+1)  .  Alternatively the invariant measure

p ( ) can be expanded in the Fourier series as

p = dθp δ -f 

      =∑
n=0

+∞

c
n
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nm

  = 2
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n 0
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∞

 
1+δ

m 0

2

2

1+δ
k 0

δ 2k   m J
2k 

n π

(14c)

where  c0=1/2, =1/(2 ) , and J α(x ) is the first-kind Bessel function of the
αth order.  An example of the solution of eq.(13) is depicted in Fig.2.
According to the solution given by eq.(13) , the Lyapunov exponent  for

<<1  can be approximately derived  as

  
~log π

2
- log2

 . (15)
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Fig.1 Bifurcation diagram and the Lyapunov exponent.
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Fig.2 An example of the invariant measure (solid line: Analytical (eq.(13)),
dots: Numerical) . 

        According to the above-noted idea,   we simply assume the following
linear dynamics for (t ) .

            

D

Dt 
= (1- )

     , (16a)

where   is a positive relaxation constant to drive the system from chaotic (
(t )~0) to nonchaotic ( (t )~1) state.         Then  (t ) has to be initialized

by setting it to 0
 (<<1), or a sufficiently small positive number so as to

induce a chaotic dynamics[22]  as  follows,     

if  t  =0 ∨
 (t +h )- (t )

h 
<   

 (t )=
0

  (0<
0

<<1)  , (16b)

where ∨  is for the logical OR operation.   At the same time, 
s

i
  and 

i  are to
be set to i   to start the association process.

3. Results 

     We shall show a few examples of the dynamic behaviour  of the present
model  in a chaotic associative mode with  eqs.(10) and (11).    Hereafter h ,

  , i , 0  and  are set to 0.5, 0.8, 1, 10-4,  and 10-10,  respectively, if
not mentioned below[10-13].   The embedded pattern vectors were randomly

selected  from 2N   binary patterns.     In the present associative model,  let us
investigate  the dynamic memory retrieval characteristics with eqs.(10) and

(11)  in the autoassociation mode  with a key input vector i , i.e. the initial

input vector for the autoassociation with the Hamming distance  Hd ,  which
corresponds to the number of the components to be set into 0,  from a target

pattern e
(s)
i (1<s<L).      The directional cosine, 

(s)
,  of the initial input
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vector i=s i (0) with respect to  a target pattern  e (s)
i   can be evaluated in

terms of

  

(s) = 1
N 

∑
i=1

N 

e (s)
i

 
i
=

N  -H
d

N 
=1-

H
d

N
  

. (17)

     Now choosing the parameters N   as 100,   the memory capacities are
derived as in  Figs.3  for Hd/N =0.01.   Thus we may confirm the  memory

retrieval up to c ~1 for Hd/N =0.01  which is remarkably larger than the
corresponding value derived in the conventional models with the monotonous
activation function as well as the nonmonotonous model proposed by
Morita[7].  
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Fig.3  The autoassociation characteristics with 
s

i
(t )=sin π

2

i
(t )

(t ) .

     To see the statistical property of the present model, we shall evaluate the
output distributions of the output and  the error  of the internal state Ne

defined as  
p (s )=lim

T →∞

1
T 

∑
 t  =0

T  -1

δ(s -s
i
(t  ))

    (18)

 
p (N

e
)=lim

T →∞

1
T 

∑
 t =0

T  -1

δ (N
e
-

i
(t  )-e (r)

i
 )  

.  (19)

where e
(r)
i

 is a target pattern such that  Σ e (r)
i

 
i

=N -H
d .  The output and the

error distributions are given in Figs.4 and 5, respectively.   Figure 4 may
resembles of Fig.2 derived from eq.(13).   Then, from Fig.5, one may

confirm that the error has a tendency to be concentrated around N e
~0 even for

a relatively large loading rate L /N.
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Fig.4 The output distribution defined by eq.(18) with 
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Fig.5 The cross-noise distribution defined by eq.(19) with
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    The dependence of the variance of the cross-noise error Ne  defined by

 Var N
e

= dN
e

N
e

2 p (N
e

)

  = lim
T→∞

1
T 

dN
e
N

e

2 ∑
 t =0

T -1

δ(N
e
-

i
(t  )-e (r)

i
 )

(20)

in Fig.6.   From these results one may see the variance is no longer
proportional to the loading rate L/N  differnt from the associatron.  
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Fig.6 The dependence of the variance of the cross-noise Ne on the loading rate
.

The probability of the success of the output of  
s i  such that  sign(s

i
)=e (r)

i ,

where e (r)
i   is a component of the target pattern to be retrieved,

Prob{sign(s
i
) = e (r)

i
 } defined by

   Prob{sign(s
i
)=e (r)

i
 }=  

sign(s i)=e (r)
i

dN
e
p (N

e
)

(21)

can be evaluated as shown in Fig.7.  Therein one may see that   does not
drastically decrease with the increase of the loading rate L /N.    This may be
regarded as the reason why the success rate  does not critically depend on the
loading rate  L /N    as shown in  Fig.3.
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Fig.7 The dependence of the probability of the success defined by eq.(21)
with   on the loading rate L /N.  

 4.  Concluding Remarks

       In this paper  the dynamic memory retrieval characteristics of such a
periodic chaos neural network with periodicity control has been found to be
considerably improved in comparison with the conventional chaos neural
networks with such a monotonous mapping  as a sigmoidal  function [4,5].
Figure 3(a)  shows that the  association can be realised up to the loading rate
~1  with       beyond the previous finding derived from the partial reverse
dynamics with the discrete time proposed by Morita et al [7],  in which ~0.27
at most even for .   It may be also concluded that the present advantage of our
model results from the compatibility between chaotic dynamics and the
symmetry of the bifurcation characteristics, which can not be realized in the
monotonous chaos neuron model proposed by Aihara et al.[4]   From the error
distribution of the present model,  we may again confirm the advantage of our
model beyond the conventional association models.  To conclude this work,
we shall compare the present result with the conventional models in Fig.8.
Therein one may see the great advantage of the proposal model beyond the
conventional models including the Aihara's monotonous chaos model whose
critical loading rate  is restricted to ~0.1.
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 (e) Sigmoidal Chaos Model (CL)           

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 Comparison between Association Characteristics 

 Loading Rate (L/N) 

 C
ri

tic
al

 D
ir

ec
tio

na
l C

os
in

e

  Fig.8  The retrieval abilities for the several association models. 

           As a future problem it seems to be worthwhile to investigate the
relationship between the synchronization of the chaos neurons and the retrieval
characteristics.
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