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Dependence of neural ergodicity on noise strength
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Abstract—In electrophysiological experiments, we
often record activities from one or just a few neu-
rons with repetitive stimulus presentation to overcome
noise in neural activities. If the collected data are rele-
vant to brain functions, the spike statistics (e.g. time-
dependent firing rates) based on average over trials
must be equivalent to those based on average over a
population of neurons. This is so-called the ergodic-
ity problem. In this paper, using a model of excitatory
neurons, we compare trial averages and population av-
erages of firing rates. In particular, we show that dy-
namical noise should be either strong enough or weak
enough for these two statistics to be consistent with
each other.

1. Introduction

Neurons are far from perfect computational units,
and they are perpetually subject to substantial back-
ground noise. Accordingly, spiking patterns from a
specified neuron vary from trial to trial even when
the neuron receives an identical stimulus under a sta-
ble condition [10]. In many experiments, a series of
stimulus or task, as schematically shown in Fig. 1(a),
is repetitively presented typically about 30 times or
more. This is to overcome experimental noise and
clarify the relation between firing patterns (e.g. in-
crease in the firing rates at a certain moment) and
animals’ behavior, attention, memory function, cog-
nition, and so on. In this context, the peri-stimulus
time histogram (PSTH), or the time-dependent aver-
aging of spike counts from many trials, is ubiquitously
used to be interpreted as temporal profiles of firing
rates of a population of relevant neurons (Fig. 1(b)).
In other words, we implicitly identify cooperative ac-
tivities of neurons such as synchronous and correlated
firing [5, 14] with the corresponding trial-based fea-
tures such as peaks in the PSTH obtained from a single
neuron. This is the physiological ergodicity assump-
tion [4, 11, 12].

The joint PSTH [2, 4, 14] also reveals task-
dependent temporal modulations of neuronal cooper-

ativity, but in a similar sense as above, the quantities
based on just two neurons are used to substitute those
based on two groups of neurons. Let us mention that
the ergodicity in this context has nothing to do with
the standard definition of ergodicity in physics and
mathematics, which indicates that the statistical en-
semble average and the temporal average match each
other. Although a better term could be coined for the
physiological ergodicity examined in this work, here
we stick to this term.

Only partial experimental and conceptional argu-
ments exist in favor of the ergodicity of spike trains
[11, 12]. The validity of ergodicity is also supported
by the finding that neighboring neurons receiving com-
mon input sources [10] tend to belong to the same
functional assembly [11].

Actually, these arguments are mostly concerned to
homogeneous populations of neurons. However, even
neighboring neurons may have different characteris-
tics. Furthermore, how interaction between neurons
via chemical and electrical synapses influences the er-
godicity is not quite obvious. For example, in the pres-
ence of coupling, it can happen that a group of neu-
rons fires synchronously, whereas the timing of syn-
chronous firing differs in each trial. This type of syn-
chrony, whose firing is not linked to external stimuli
or other clocks, may be important in the formation of
the synfire chain [1, 9]. Then, firing rates based on
repeated recording of a single cell (trial firing rate) do
not generally agree with population firing rates. Os-
cillatory and nonoscillatory synchronous firing, which
is considered to be relevant to, for example, visual [5]
and somatosensory [13] information processing, may
accompany this type of inconsistency as well. On the
other hand, ergodicity is also violated when population
asynchrony and trial synchrony are simultaneously re-
alized.

In [8], we have explored the conditions for the ergod-
icity to hold by neural network models, mostly con-
sisting of leaky integrate-and-fire (LIF) neurons. Ac-
tually, the breakdown of ergodicity is shown to occur
in some parameter configurations. In this work, we
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concentrate on effects of the level of dynamical noise
applied to neurons and examine in which cases ergod-
icity is sustained.
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Figure 1: (a) Schematic picture of multiunit recording
from the brain of a monkey engaged in a repeated task.
(b) The problem of ergodicity of spike trains. Single-
trial spike trains from multiunit recording and single-
unit spike trains from repeated trials are compared.
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2. Model and Results

We numerically simulate 100 pulse-coupled LIF neu-
rons, whose architecture is schematically shown in
Fig. 2. They are among the simplest models of spik-
ing neurons and fire either synchronously or asyn-
chronously depending on the noise intensity [3, 6, 15]
or the values of other model parameters [1, 3, 7]. We
apply dynamical noise independent for different neu-
rons and inspect the ergodicity in terms of the degree
of synchrony. We set the membrane potential leak rate
v = 0.04 ms~! and use different noise level D’. Actu-
ally, D' is the standard deviation of the Gaussian noise
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Figure 2: Architecture of the pulse-coupled network of
LIF neurons.

applied independently to each neuron every dt = 0.025
ms. A neuron sends feedback spikes with amplitude
€ = 0.008 and synaptic delay 0.8 ms to 30 randomly
chosen neurons. The time course of the synaptic cur-
rent is represented by the delta function for simplicity.
As the deterministic part of an external input, we use

Lot (t) = A(4.9-10 % + 5.6 - 102 sin(27t/Teqr))

(1)
with A = 0.92 and T,,; = 14 ms. For illustration, time
courses of population firing rates and ones of trial-
averaged firing rates are shown in Figs. 3(a) and 3(b)
for D' = 0.002 and D' = 0.004, respectively. Nat-
urally, smaller dynamical noise (Fig. 3(a)) results in
more synchrony across both different neurons and dif-
ferent trials. In Fig. 3(b), both the population activity
and the trial-averaged activity are asynchronous be-
cause of large noise. In either case, the network is in
the ergodic situation as far as we are concerned only
to the profile of firing rates. Particularly in the latter
case, firing rates averaged over the neurons or the trials
asynchronously reproduce a relatively precise tempo-
ral waveform of I.;¢(t) [6, 7, 15], enabling efficient rate
coding.

Is there any intermediate scheme in which the er-
godicity breaks down? Presumably, trial asynchrony
emerges with a smaller noise strength than popula-
tion asynchrony does. This is because population syn-
chrony is more easily realized owing to the feedback
coupling. On the other hand, there is no coupling be-
tween different runs of experiments, except a smaller
synchronizing tendency due to the repeated use of an
identical stimulus and homogeneity of a neuron across
trials.

To be more quantitative, we compare the degree of
synchrony calculated from traces of population firing
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Figure 3: Example traces of population firing rates
(solid lines) and trial firing rates (dotted lines) of 100
pulse-coupled LIF neurons. (a) D' = 0.002 and (b)
D' =0.004. The statistics are based on 100 trials with
an identical stimulus and identical initial conditions.

rates and trial firing rates for various noise levels. The
degree of synchrony is measured by the standard de-
viation of firing rates normalized by the temporal av-
erage of the firing rates. With the model parameters
same as those used in Fig. 3, the results are shown
in Fig. 4(a) together with the difference between the
degree of population synchrony and that of trial syn-
chrony (Fig. 4(b)). As expected, both degrees of syn-
chrony are large for small values of D', and just a small
discrepancy is found. The discrepancy is also small for
a large noise level D’. In this case, the coupling effect
is smeared out by the noise, and both firing rates indi-
cate asynchrony. However, in the middle range of D’
(around D’ = 0.002), population synchrony is more
persistent, whereas trial synchrony is more readily lost.
As mentioned, this is because there is no coupling be-
tween spike trains from different trials. On the other

5

degree of synchrony

0
0.003 0.006 0.009
noise level
(b)
>
C
o
S 06|
>
()]
£ 04
>
e
g 02
o
2 0
© 0.003 0.006 0.009
noise level

Figure 4: (a) Degrees of population synchrony (solid
line) and trial synchrony (dotted line) as functions of
the noise level D'. (b) The difference between two syn-
chrony levels. We use 100 pulse-coupled LIF neurons
with the same parameter values as those used in Fig. 3.

hand, a population of neurons are interconnected to
resist to desynchronizing factors [3, 6]. The ergodic-
ity is violated in this intermediate scheme, which is a
warning for the interpretation of experimental data.

3. Conclusions

We have examined how dynamical independent
noise affects the degree of ergodicity. The grade of
population synchrony and that of trial synchrony devi-
ate from each other for the intermediate noise strength.
Of course, there are many other factors that influence
the ergodicity [8], and how these factors and the noise
interact is far from trivial. To work with more re-
alistic neural networks and experimental data is our
future problem.
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