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Abstract—In this paper, a method is proposed
to prove the existence of solutions for nonlinear ordi-
nary equations on an essencially bounded functional space.
Green’s Function Expression is used to prevent from over-
estimating integral arithmetic for set functions by Affine
Arithmetic.

1. Introduction

Many methods have been proposed to prove the
existence of solutions for nonlinear ordinary differential
equations. Especially, one of the authors, Oishi, proposed
a method to prove the existence of solutions for nonlinear
ordinary differential equations on a continuous functional
space. This method uses Krawczyk’s operator on a func-
tional space [1]. Krawczyk-like operator is constructed
from Newton operator using Mean Value Theorem. This
operates is from an interval on a functional space to an in-
terval on a functional space. In order to calculate the im-
age of Krawczyk-like operator, Interval Arithmetic on the
functional space is used. We have used Affine Arithmetic
instead of Interval Arithmetic in order to avoid the explo-
sion of interval as the result of calculation [4].

In this paper, we shall revise the form of Krawczyk-
like operator for computational accuracy than for computa-
tional complexity using Green’s function expression.

2. Preliminaries

In this section, we introduce the theorem to prove
the existence of the solution for nonlinear ordinary differ-
ential equations. we also introduce some arithmetic and
inclusion of Heviside’s step function.

2.1. Formalization to Operator Equation

In this subsection, we formalize nonlinear ordinary
equation to an operator equation on a Banach space.

We consider the following nonlinear boundary
value problem of a system of first order real differential

equations:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx
dt
= f (x),

g(x) =
n∑

k=1

Bkx(tk) + b = 0 (t ∈ J = [0, 1]),
(1)

where x is a n-dimensional vector valued function on J,
f (x) is a n-dimensional vector valued function, Bks are n-
dimensional matrices, b is a n-dimensional vector and 0 =
t1 < t2 < · · · < tn = 1.

In the following, we assume that an approximate
solution c(t) is given for the problem (1). We also assume
that it is a step function. Under these assumptions, we will
present a sufficient condition on which the problem has an
exact solution in a domain containing an approximate solu-
tion c(t). Let X be the Banach space of real n-dimensional
vector valued functions x(t) = (x1(t), x2(t), · · · , xn(t)) which
is essentially bounded on the interval J with the maximum
norm

‖x‖∞ = max
1<=i<=n

max
t∈J
|xi(t)|. (2)

In the following, ‖ · ‖ means ‖ · ‖∞. Let Y = X × Rn be the
Banach space with the norm

‖y‖Y = max(‖u‖, ‖v‖) for y = (u, v) ∈ Y. (3)

Let D be a subset of X. In the following, vectors and ma-
trices mean n-dimensional vectors and n × n-matrices, re-
spectively. We assume that the given approximate solu-
tion c(t) is an element of X. We now define an operator
F : D ⊂ X → Y by

Fx =
( dx

dt
− f (x), g(x)

)

. (4)

Then we can rewrite the original problem as the following
operator equation:

Fx = 0. (5)

2.2. Existence Theorem of Solution for Eq.(5)

In this subsection, we shall introduce the existence
theorem of the solution for Eq.(5).

In the following, we assume that f : X → X is
continuously Fréchet differentiable with respect to x. The
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Jacobi matrix of f with respect to x is denoted by fx(x),
and the Fréchet derivative of g is denoted by l. Then it is
easy to see that F : X → Y is Fréchet differentiable for an
element x of D and the Fréchet derivative Fx(x) : D → Y
is given as follows:

Fx(x)h =
( dh

dt
− fx(x)h, lh

)

, (6)

where h ∈ D.
For a real matrix valued step function A(t) on J

which approximate fx(x) and for the vector valued con-

tinuous linear functional l =
n∑

k=1

Bk x(tk), respectively, we

define the following linear operator

Lh =
( dh

dt
− A(t)h, lh

)

. (7)

Let Φ(t) be the fundamental matrix of the linear homoge-
neous differential system

dΦ(t)
dt
= A(t)Φ(t) (8)

satisfying Φ(0) = E, where E is the unit matrix.

Lemma 2.1 Let G = l[Φ] be the matrix whose column
vectors are l[φi(t)](i = 1, 2, · · · , n), where φi(t) are the col-
umn vectors of the matrix Φ(t).

If G is invertible, then L is also invertible and then,
for (u, v) ∈ Y, L−1(u, v) : Y → X is described as

L−1(u, v)

=

∫ 1

−1
Φ(t)

⎛
⎜⎜⎜⎜⎜⎜⎝
G−1

⎛
⎜⎜⎜⎜⎜⎜⎝

j∑

k=1

BkΦ(tk)

⎞
⎟⎟⎟⎟⎟⎟⎠
− h(s − t)E

⎞
⎟⎟⎟⎟⎟⎟⎠
·

Φ−1(s)u(s)ds + Φ(t)G−1v, (9)

where h(s − t) is the Heviside’s step function.

Now we assume that G is invertible. We consider a
Newton-like operator k : X → X

k(x) = L−1( f (x) − A(t)x,−b). (10)

Let T be a closed convex subset of X and let be T � c. Let
B be a closed ball of X whose midpoint is the origin and
the radius is 1. We now introduce the following theorem.

Theorem 2.1 If
{kx|x ∈ T } ⊂ T (11)

and
max

x̂∈T
x̌∈B

‖L−1(( fx(x̂, t) − A(t))x̌, 0)‖ < 1 (12)

hold, there is a fixed point x∗ of k uniquely in T .

This theorem is proved by Banach’s contraction mapping
theorem.

As the conventional method, T is calculated as

T = c + 2‖k(c) − c‖.
If we can calculate (11) and (12) by computers, we

can check whether the solution exists or not by computers.

2.3. Affine Arithmetic[2]

In this subsection, we introduce Affine Arithmetic.

Definition 2.1 Let be ai ∈ R for i ∈ {0, 1, · · · ,m}. Let be
−1 <= εi <= 1 for i ∈ {1, · · · ,m}. The form

a0 +

m∑

i=1

aiεi

is called Affine Form and it describes the set

{a0 +

m∑

i=1

aiεi| − 1 <= εi <= 1, i ∈ {0, 1, · · · ,m}}.

A set of Affine Forms which describe subsets of a space U
is denoted byA(U).

Definition 2.2 For a(1), a(2) ∈ A(R), operations

{a(1) ∗ a(2)|∗ ∈ {+,−,×, /}}
and

{φ(a(1))|φ ∈ {sin, cos, tan, exp, log, · · ·}}
are determined as

• the result is also an Affine Form

• the set described by the result holds

a(1) ∗ a(2) ⊃ {x(1) ∗ x(2)|x(1) ∈ a(1), x(2) ∈ a(2)}
and

φ(a(1)) ⊃ {φ(x(1))|x(1) ∈ a(1)},
respectively.

Let a(1) and a(2) be

a(1) = a(1)
0 +

m∑

i=1

a(1)
i εi and a(2) = a(2)

0 +

m∑

i=2

a(2)
i εi.

Addition and Subtraction between a(1) and a(2) are operated
as

a(1) ± a(2) = a(1)
0 ± a(2)

0 +

m∑

i=1

(a(1)
i ± a(2)

i )εi.

Addition and Subtraction between a(1) and a constant num-
ber c ∈ R are operated as

a(1) ± c = a(1)
0 ± c +

m∑

i=1

a(1)
i εi.

Multiplication between a(1) and a(2) is operated as

a(1) × a(2) = a(1)
0 a(2)

0 +

m∑

i=1

(a(1)
0 a(2)

i + a(1)
i a(2)

0 )εi

+ (
m∑

i=1

|a(1)
i |) · (

m∑

i=1

|a(1)
i |)εm+1,

where εm+1 ∈ R is a new symbol and satisfies −1 <= ε <= 1.
Various unary operations for a(1), for example, the recipro-
cal of a(1), the square root of a(1), the sine function of a(1),
and so on, have also been proposed but is not described
here because of the sake of papers.
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2.4. Functional Arithmetic

For arithmetic on a functional space, we use some
kinds of polynomials. Here we introduce Power polyno-
mial

l∑

i=1

αit
i (αi ∈ R)

and its arithmetic.

Definition 2.3 Let c1(t) and c2(t) be power polynomials
described as below:

c1(t) =
l∑

i=1

α(1)
i ti and c2(t) =

l∑

i=1

α(2)
i ti.

Addition and subtraction between c1(t) and c2(t) are de-
fined as

c1(t) ± c2(t) =
l∑

i=1

(α(1)
i ± α(2)

i )ti.

Multiplication between c1(t) and c2(t) is defined as

c1(t) × c2(t) =
2l∑

i=0

(
min{i,l}∑

j=max{0,i−l}
(α(1)

j α
(2)
min{i,l})t

i).

The absolute value of c1(t) is overestimated as

|c1| <
l∑

i=0

|α(1)
i |.

The differentiation of c1(t) with respect to t is calculated as

dc1

dt
=

l−1∑

i=0

(i + 1)α(1)
i+1ti. (13)

The integration of c1(t) from −1 to t is calculated as
∫ t

−1
c1dt =

l+1∑

i=1

1
i
α(1)

i−1ti.

Let P be a set of power polynomials.

2.5. Functional Affine Arithmetic

In this section, we extend Affine Arithmetic to that
on P.

Definition 2.4 Let be ai(t) ∈ P and let be εi(t) ⊂ C[J] for
i ∈ {1, · · · ,m} and let be a0(t) ∈ P. Let be −1 <= εi(t) <= 1
for i ∈ {0, 1, · · · ,m}. The form

a0(t) +
m∑

i=1

ai(t)εi(t)

is called Affine Form function and it describes a set of func-
tion x(t) satisfying

x(t) ∈ a0(t) +
m∑

i=1

ai(t)εi

for all t ∈ J.

Definition 2.5 For a(1)(t), a(2)(t) ∈ A(C[J]), operations,

{a(1)(t) ∗ a(2)(t)|∗ ∈ {+,−,×, /}}
and

{φ(a(1)(t))|φ ∈ {sin, cos, tan, exp, log, · · ·}},
are determined as

• the result is also an Affine Form function

• the set described by the result holds

a(1)(t) ∗ a(2)(t) ⊃ {x(1)(t) ∗ x(2)(t)|x(1)(t) ∈
a(1)(t), x(2)(t) ∈ a(2)(t)}

and

φ(a(1)(t)) ⊃ {φ(x(1)(t))|x(1)(t) ∈ a(1)(t)},
respectively.

Let a(1)(t) and a(2)(t) be

a(i)(t) = a(1)
0 (t) +

m∑

i=1

a(i)
i (t)εi(t) (i ∈ {1, 2}).

Addition and Subtraction between a(1)(t) and a(2)(t) are op-
erated as

a(1)(t) ± a(2)(t) = a(1)
0 (t) ± a(2)

0 (t) +
m∑

i=1

(a(1)
i (t) ± a(2)

i (t))εi

Addition and Subtraction between a(1)(t) and a power poly-
nomial c(t) ∈ P are operated as

a(1)(t) ± c(t) = a(1)
0 (t) ± c(t) +

m∑

i=1

a(1)
i (t)εi(t).

Multiplication between a(1)(t) and a(2)(t) is operated as

a(1)(t) × a(2)(t) = a(1)
0 (t)a(2)

0 (t)

+

m∑

i=1

(a(1)
0 (t)a(2)

i (t) + a(1)
i (t)a(2)

0 (t))εi(t)

+(
m∑

i=1

|a(1)
i (t)|) · (

m∑

i=1

|a(2)
i (t)|)εm+1(t),

where εm+1(t) is a new symbol and satisfies −1 <= εm+1(t) <=
1. The absolute value of a(1)(t) is overestimated as

|a(1)(t)| <
m∑

i=0

|a(1)
i (t)|.

The integration of a(1)(t) from −1 to t is overestimated as
∫ t

−1
a(1)(τ)dτ =

∫ t

−1
a(1)

0 (τ)dτ +

2m∑

i=m+1

∫ t

p
|a(1)

i (τ)|dτεi(t),

where εi(t) ∈ C[J]s (i ∈ {m + 1,m + 2, · · · , 2m}) is the new
noise symbols and satisfies −1 <= εi <= 1, respectively.
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2.6. Inclusion of h(s − t)

When we exactly treat h(s − t) as

h(s − t) =
{

0 (s < t),
1 (s > t),

we cannot calculate (9) with high accuracy because u(s) is
Interval Function. In this subsection, we consider an in-
clusion H(s − t) = [h̄(t, s), h(t, s)] of h(s − t) in order to
avoid the above difficulty, where both c1(t, s) and c2(t, s)
are polynomials.

A function

p(s, a) =
exp(2as)

exp(2as) + 1

is a good approximation of h(s) for large a. Using this
function, we have

p(s − 1
2

log(
1 − b

b
), a) − b <= h(s)

<= p(s +
1
2

log(
1 − b

b
), a) + b.

Using Taylor expansion, we can obtain an upper bound
c1(s) of p(s+ 1

2 log( 1−b
b ), a)+b and an lower bound c2(s) of

p(s − 1
2 log( 1−b

b ), a) − b. Since c1(s) is also an upper bound
of h(s) and c2(s) is also an lower bound of h(s), we can set

H(s − t) = [c1(s − t), c2(s − t)].

3. Numerical Verification

In order to obtain T , we have to calculate k(c).
Since c(t) and A(t) are given as a step function, we can cal-
culate f (c)−A(t)c using piecewise machine Interval Arith-
metic and we can obtain the inclusion of f (c) − A(t)c as an
Interval Function whose endpoints functions are step func-
tions. Using some methods[5],[3], we can obtain the inclu-
sions of Φ(t) and Φ−1(t) as Interval Functions whose end-
points functions are polynomials. Since h(s− t) is obtained
as an Interval Function whose endpoints functions are poly-
nomials, we can obtain k(c) as an Interval Function whose
endpoints functions are polynomials. After evaluating the
norm ‖k(c) − c‖, we can obtain T as an Interval Function
whose endpoints functions are step functions.

In order to confirm that conditions (11) and (12)
hold, we have to calculate the left-hands of these condi-
tions. After translating Interval Functions T and B into
Affine Form, { f (x) − A(t)x|x ∈ T } and {( fx(x̂) − A(t))x̌|x̂ ∈
T, x̌ ∈ B} can be calculated using piecewise Affine Arith-
metic. SinceΦ(t),Φ−1(t) and H(t− s) are obtained as Inter-
val Function and they can be translated into Affine Forms,
We can obtain left-hands of conditions (11) and (12) using
Functional Affine Arithmetic.

4. Numerical Example

Let us consider the equation described as

d
dt

(
x1
x2

)

=

(
x2

−x1 − (x1 − t)3 + t + 0.1

)

, (14)

g(x)=
(

x1(0) − 0.1
x1(1) − 1.1

)

. (15)

We took

c(t) =
(

c1(t)
c2(t)

)

=

(
t + 0.1

1

)

as an approximate solution of (14), (15).
We set T as T = c + 2‖k(c) − c‖. By translating T

into an Affine Form described as

T = (c1(t) + bεc1 (t), c2(t) + bεc2(t))
tr.

and by calculating an inclusion of {kx|x ∈ T } and an upper
bound of

max
x̂∈T
x̌∈T
{‖L−1( fx(x̂(t), t) − A(t)), lx̂ − g(x̂))x̌(t)‖}

using Affine Arithmetic, we have the sufficient condition
for Theorem 2.1 and can find a unique solution for Eq.(14),
(15) in T .
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