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Abstract– Experiments using a simple circuit described 

by the Lorenz equations are presented. The circuit consists 
of two analog multipliers and seven passive elements, is 
robust and very easy to build. It is intended to allow 
laboratory experiments giving support to Lorenz chaos 
theory and its applications. By varying the circuit 
parameters a large class of phenomena can be observed, 
such as stable and chaotic symmetrical and non-
symmetrical orbits, bifurcations, noisy periodicity, 
hysteresis, transient chaos and intermittency. Numerical 
experiments using an approximate function to observed 
Lorenz maps are also described. 

 
1. Introduction 

 
     In the last decades the Lorenz system [1] has been 
intensely studied and used as a paradigm in chaos 
research and applications. However, due to practical 
difficulties, few experimental works have been published 
which give support to the theory. Aiming at contributing 
in this direction, this work reports on a new circuit 
realization of the Lorenz system and its use in laboratory 
experiments. Existing Lorenz circuits are in the analog 
computer form made of a large number of components [2]. 
In the present approach fewer components are employed. 
The proposed circuit is exactly described by the Lorenz 
equations, is easy to build and is robust in the sense that 
the chaotic attractor persists under perturbation of 
parameters. Other circuits showing Lorenz-like butterfly 
attractors have been reported in [3] and [4]. However, as 
explained in those works, their circuit equations are not 
topologically equivalent to the Lorenz equations. To 
achieve fully equivalent systems it is essential the use of 
multiplier circuits, because the nonlinearities involve 
product terms of variables. The proposed new circuit 
comprises two analog multipliers, four resistors, two 
capacitors and one inductor, possibly the simplest Lorenz 
circuit. Obvious limitations are caused mainly by non-
idealities in the analog multipliers, such as low slew rate 
and limited dynamic range. Accordingly, to reduce 
distortions, the circuit needs to be operated within 
appropriate intervals of parameter values. Though the 
parameter space may be restricted, most of the important 
aspects of Lorenz system can be observed. In the 
following sections the proposed circuit is described and 
some experimental results are presented. A numerical 
approach for studying the experimentally observed 
Lorenz maps is also presented. 

2. Circuit model 
 
    The proposed circuit is shown in Fig. 1(a), where two 
analog multipliers are employed. The first multiplier is 
connected as a voltage-controlled voltage source. The 
other multiplier is connected, via R4, as a voltage-control-
led current source. The transfer function of each multi-
plier is given by W=0.1(X1-X2)(Y1-Y2)+Z, therefore the 
output voltage of the first multiplier is W=-0.1V1V2+V1 
and the output current of the second multiplier is 
IR4=0.1IV1R2/R4. The equivalent circuit is shown in Fig. 
1(b). The circuit equations are: 
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Fig. 1. (a) The proposed Lorenz circuit and (b) its equivalent 
circuit.     
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Rescaling time by t→τσR1C1 and defining the following 
dimensionless quantities: 
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then, by combining (1) and (2), Lorenz equations [1] are 
obtained: 
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Fig. 2. Observed trajectory using E=15V, R2=100Ω, R3=160kΩ, 
C1=22nF and C2=1nF.  The chaotic attractor disappears at 
E=13.8V. Horizontal: V1 (2V/div). Vertical: V2 (2V/div). 

Note that the parameters σ, b and r can be independently 
varied by C1, R3 and E, respectively. 
 
 
3. Experiments 

 
3.1. Phenomena visualization 

 
     An experimental circuit was constructed using two 
AD633 multipliers powered from ±15V supplies and the 
following fixed elements: L=10mH, R1=1.5kΩ and 
R4=1kΩ. By varying the circuit parameters a large class 
of phenomena can be observed, such as stable and chaotic 
symmetrical and nonsymmetrical orbits, bifurcations, 
noisy periodicity, hysteresis, extra-twisting, transient 
chaos and intermittency. By Eqs. (2), the popular values 
σ=10 and b=8/3 [1] can be obtained with R2=50Ω, 
R3=200kΩ, C1=13.3nF, and C2=330pF, but in that case 
the bifurcation parameter r, in the chaotic region without 
waveform clipping, ranges from only r~25 to r~35. 
Reducing b, or both b and σ, extends the r range. For 
example, with R2=100Ω, R3=900kΩ, C1=23.6nF and 
C2=1nF (corresponding to σ=2.82 and b=0.11) r can be 
varied from r~5 to r~76.  
    As examples of observable phenomena, some results 
are now presented. Fig. 2 shows a typical V1-V2 trajectory. 
By decreasing E while keeping fixed all the other circuit 
parameters, there is a point where the chaotic attractor 
suddenly disappears due to an inverted bifurcation [5]. 
Below this point transient behavior can be observed by 
periodically discharging the capacitor C1. Using this 
method, it is possible to detect and examine the region 
where occurs the first homoclinic orbit, as explained in 
[1] (Fig. 3). In Fig. 4(a) a Lorenz map (a plot of 
successive local  maxima of  V2) is shown,  corresponding  
to the attractor  in Fig. 2.  Figure 4(b)  shows  a   double- 
cusp   Lorenz   map   (corresponding to  extra-twisting [1] 
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Fig. 4. (a) Experimental Lorenz map for the attractor shown in 
Fig. 2. (b) A double-cusp Lorenz map (R2=100Ω, R3=460kΩ, 
C1=14.7nF, C2=500pF and E=23V).  Horizontal: V2(peak) 
(1V/div). Vertical: V2(peak) (1V/div).  
 
 
 

 
 
 
Fig. 5. Bifurcation diagram showing hysteresis observed by 
varying E in the directions indicated by the arrows (R2=100Ω, 
R3=406kΩ, C1=14.7nF, C2=1nF). Horizontal: E (2V/div). 
Vertical: V2(peak) (2V/div).   
 
 

3.2. Numerical approach 
 

     By using an approximate curve to experimental points 
recorded from the observed Lorenz map it is possible to 
investigate some phenomena via one-dimensional iterated 
dynamics. Let u(n) denote the nth peak value of  V2(t). 
Then u(n+1)≈U(u(n)), where 
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Function (4) is a here proposed modified version from 
that used in [5]. β can be calculated by the theoretical 
formula [5]: 
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Given the coordinates (u0,U0) of the cusp maximum, 
estimated from the experiment, the other parameters can 
be determined by the least squares technique or other 
method. Fig 6 shows an example of experimental Lorenz 
map and its fitting curve. Lorenz map properties can be 
investigated by writing Eq. (4) as a function of a varying 
circuit parameter. This is illustrated in Fig. 7, which 
shows results of numerical experiments on Lyapunov 
exponents, hysteresis, transient chaos and intermittency. 
The used curve parameters are presented in the Appendix. 
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Fig. 6. Experimental Lorenz map (points) for R2=100Ω, 
R3=190kΩ, C1=22nF, C2=1nF and E=15V, and its fitting 
function (a1=7.0V1-β, a2=0.254V-1, a3=-0.055V-2,   a4=7.4V1-β, 
a5=0.109 V-1, u0=2.25V, U0=10.0V, β=0.084).  
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Fig. 7. Numerical experiments on Lorenz map using the 
parameters presented in the Appendix. a) Lyapunov exponent λ 
for varying E, showing hysteresis. b) Intermittent chaos  
(E=12.273V). c) Transient chaos (E=12.270V). 

 
 

4. Conclusion 
 

    Laboratory experiments using a simple circuit reali-
zation of the Lorenz system are presented. Numerical 
experiments using an approximate function to Lorenz 
maps displayed by the circuit variable V2 are also des-
cribed. An interesting feature of the circuit is that the 
parameter r can be varied linearly with a bias voltage 
(therefore modulation of r by an external signal can easi-
ly be accomplished). Limitations typical of electronic 
circuits reduce the permitted range of a bifurcation 
parameter. To partially overcome this problem and thus 
explore the richness of the Lorenz system dynamics, an 
adopted solution was to reduce the size of the attractor by 
working with smaller b and σ values than the popular 
b=8/3 and σ=10. Such a restriction is not disadvantageous 
because the system qualitative behavior is essentially 
preserved.  
    As a final comment, it is worth noting that by 
introducing slight modifications in the circuit of Fig. 1 a 
simple circuit realization of the Chen system [6] can be 
obtained ─ this scheme will be described elsewhere. 
 

 
 Appendix 

 
    The hysteresis curve of Fig. 7(a) is calculated using the 
following approximate relations derived from experi-
mental data (σ=3, b=0.526, 9<r<40, where r=1.5E): 
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To find the intermittent chaos and transient chaos 
waveforms of Fig. 7(b) and Fig. 7(c) the following rela-
tions are used (σ=3, b=0.97 , 15<r<20, where r=1.5E): 
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