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Abstract—We study, analytically, the discrete complex
cubic-quintic Ginzburg-Landau (dCCQGL) equation. We
find a set of exact solutions for this equation which includes
as particular cases periodic solutions in terms of elliptic Ja-
cobi functions, bright and dark soliton solutions, and con-
stant magnitude solutions. We perform the numerical sim-
ulations for exact solitary waves. We discuss the relation
of these solutions to solutions of the continuous complex
Ginzburg-Landau model.

1. Introduction

The complex Ginzburg-Landau (CGL) equation plays an
important role in various branches of science. Dissipative
solitons of the CGL equation, studied by many authors, are
possible due to the interplay between linear and nonlinear
gain, nonlinearity, dispersion, and dissipation. In this con-
text, “soliton” means a localized wave structure (i.e., they
do not necessarily interact elastically).

Discrete solitons in nonlinear lattices are possible in
various areas, e.g. biology, atomic chains, solid state
physics, electrical lattices and Bose-Einstein condensates
[1,2,3,4,5,6,7,8,9, 10]. Discrete solitons also exist in
arrays of coupled nonlinear optical waveguides [11]. Pho-
tonic crystals can support “discrete solitons” with interest-
ing properties.

In the discrete nonlinear Schrodinger (ANLS) equation,
the term ¥,+1 — 24, + Y1 plainly approximates a sec-
ond derivative term for a continuous system and so phys-
ically represents diffraction. A transform eliminates the
term —24r,,, thus indicating that what is occurring is nearest-
neighbour coupling. Hence, a realistic discrete system fea-
tures diffraction-type effects.

The dNLS equation has been used [12] to model the
propagation of discrete self-trapped beams in an array of
weakly-coupled nonlinear optical waveguides, but it is not
completely integrable. The integrable discrete nonlinear
Schrodinger equation (Ablowitz-Ladik (AL) system) is

dy, D
i :z{/t +§('ﬂn+1—2§0n+¢fn—1)+|¢/n|2(¢n+1+z,0,,_1) =0. (1)

The integrability of some ‘deformed” dNLS equations was
investigated in [13].

A discrete analogue of the complex cubic-quintic
Ginzburg-Landau equation was studied in [14]. Using
a perturbation technique, they found a soliton solution
which is valid at small values of the dissipative terms for
this equation. A different discrete complex cubic-quintic
Ginzburg-Landau equation was studied in [15].

In [16], we studied the discrete complex Ginzburg-
Landau equation (dCGLE)

dyr, D
i Z + (5 - l.B) Wrne1 — 2 + Y1)

+(1 = i©Wnl*Wns1 + Yno1) = i . (2)

Several exact solutions were derived in this case, but they
were unstable in the numerical study [17], reflecting the sit-
uation in the complex cubic continuous Ginzburg-Landau
equation.

In this paper, we also study a discrete equation, similar
to that in [14, 15], but include a quintic nonlinearity which
is non-local. We derive exact solutions which are valid at
arbitrary values of dissipative terms. So we are not lim-
ited to small values. Specifically, we consider a model of
a dissipative system, viz. the following discrete complex
cubic-quintic Ginzburg-Landau equation (dICCQGLE)

dyrn
dt

i
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+(1 = i€) Yu Wal* + v =i ) Wal* W1 + Y1)
—isy, = 0. 3)

The continuous limit of (3) is the complex cubic-quintic
Ginzburg-Landau equation (CCQGLE) [18]

dy
dt i
which has many applications in describing non-equilibrium
systems, phase transitions, and wave propagation phenom-
ena. In the limitof 8 = € = v =y = 6§ = 0,
eq.(3) is reduced to the (non-integrable) discrete nonlinear
Schrodinger equation

ld:;;n + g(d’n‘*l - 2',0}1 + {//n_l) + l/’n |wn|2 -0. (5)

If we take the continuous limit of eq.(3) with ¢, = a'¥,,,
T =a%,x =naand § = §,a° (a is a small lattice param-
eter), we have the complex quintic Swift-Hohenberg type

(3 - i) —ielufu+o-iglpi'y = iow. 4

i
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which also has many applications in describing non-
equilibrium systems.

2. Exact soliton solutions

Stationary solutions of eq.(3) are defined by
Yn= ¢u e—iwt . (7N

The Hirota method can be applied to obtain selected ex-
act solutions of eq.(3) [19]. In order to do this we substitute
V(D) = Gu(De™! = BGe () = e = e
with real f,, into eq.(3). As a result, we obtain the multi-
linear form. Then, the standard procedure of the Hirota
method can be used to obtain the exact solutions listed in
the following sections.

Solutions can be obtained only for certain relations be-
tween the coeflicients of the equations. Namely, we set

0=€w, B=€eD/2, pu=ev, 8)

and note that in this case the system simplifies to

Wn +§ (@n+1 =20 +Pn1 )+¢131 + (@ur1 +Pn1 )V¢i = 0.

€))

Simple (constant) solution. We take D,v and € arbi-

trary. Direct substitution shows that any constant a is a
solution, so long as w = —a? (1 +2a*v).

Alternating constant solution. Furthermore, (—1)"a is

a solution for any constant a, so long as w = 2D + 2a*v —

a.

2.1. Bright soliton.

By using,for example, the Hirota method, we can find the
explicit solution for the fundamental soliton with a constant
phase across its profile.

We can write the two relevant solutions separately using
the function sech. For the bright pulse solution, we need
D > 0 but arbitrary, and v < 0 but arbitrary.

For convenience, we define k using

sech(k) = V=2vD (< 1).
The solution is then:

¢, = +/Dcosh(k) sinh(k) sech(kn + a), (10)
with e arbitrary and @ = —2Dsinh*(%). This can also be

expressed as
_ [D(p+p!
(P =P 1) - (p;p )

pn+na + p—n—na

$n = (1D

where k = log p and n, = a/k.

The soliton profile is shown in Fig.1la. The numerical
simulations based on the original equation (3) show that
this solution is stable. The results of the simulation are
shown in Fig.1b. Small perturbations do not destroy the so-
lution and tend to disappear as the soliton evolves in time.
We recall that solitons of the dCGLE are unstable [17].
This shows that quintic terms are important in making the
soliton stable.

Let us consider particular examples. For D = 1 and v =
—1/4, we have the all-positive solution:

¢n = 2i sech (n arcsech(%)) ~ 1.189207sech (0.8813736n)

This can also be expressed as

2.37841
bn = 237841 g =0.414214,

= 12
" +q" (12

and is clearly positive everywhere.

2.2, Bright soliton with alternating sign

In the case of the bright alternating sign (spiked) soli-
ton solution , we need D < O but arbitrary, and v > 0
but arbitrary, As before, we define k through sech(k) =
V=2vD (< 1). The solution is:

¢n = (=1)" /= Dcosh(k) sinh(k) sech(kn + ),

with g arbitrary and w = +2D coshz(g).

For D = —1 and v = 1/4, we have the alternating sign
solution:
¢n = 1.189207 (—1)" sech(0.8813736n), which also be ex-
pressed as

13)

2.37841
g, = 238 414214,

= 14
q"+q™" 1

It is clearly positive for n even and negative for n odd.

2.3. Dark soliton.

In analogy with the previous case we can find the solu-
tion for the dark solitons. We can also introduce the pa-
rameter k through cosh*k = =2Dv(> 1). For D < 0 but
arbitrary and v > O but arbitrary , such that 2Dv < -1,
the plain dark soliton solution can be written in terms of
hyperbolic functions:

¢, = V—Dsech (k) tanh (k) tanh(k n + @») (15)

where @ is arbitrary and the frequency is w = D tanh’k.
This can also be expressed as

_ 2V=D(p-p") p"re—pre

= , 16
$n (P +p—1)2 ptia + pha (16)

where n, = a/k.
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Figure 1: (a) Bright soliton profile for the equation param-
eters D = 1, v = —0.4. This implies that k = 0.481212 and
the soliton is given by ¢, = 0.528686 sech[0.481212 n]. (b)
Numerical simulation showing stationary soliton evolution
in time for € = 0.05.

For example, D =
1 tanh(0.88137 n).

The dark soliton profile is shown in Fig.2a. Numerical
simulations showing the evolution of this solution in time
are presented in Fig.2b. The solution is stable and evolves
in time without changing. Moreover, small perturbations
do not grow but rather disappear exponentially with time.

-1, v = 2, we have ¢, =

2.4. Alternating sign dark soliton.

We now describe the solution for the dark soliton with
alternating sign values of ¢,,. We again define the parameter
k through cosh*k = —2Dv (> 1). For D > 0 but arbitrary
and with v < 0 but arbitrary , such that 2Dv < -1, as
before, we can express this solution in terms of hyperbolic
functions. The alternating sign dark solution can be written
as

. = (=1)" VD sech(k) tanh(k) tanh(kn +B;) (17
where (3, is arbitrary and the frequency wis w = D (1 +
sech® k). This can be expressed as

2VD(p - p) pre
(p+p'y

— pha
pn+na + p—n—n[,

b0 = (-1)"

> (18)

where ny, is arbitrary.
For example, D = +1, v
$n= (=1)" 1 tanh(0.88137 n).

-2, we have

Figure 2: Dark soliton profile for the equation parame-
ters D = —1, v = 0.824898765. Numerical simulation
showing stable stationary dark soliton evolution in time for
€ =0.001.

2.5. Periodic solutions

There are many periodic solutions with v arbitrary, apart
from sign, and D arbitrary. Here are some examples:

[~ D 4
&n 5Vcos(mr/3), with w 5 + 755" (19)

/—«/E . D 2
On = T cos(nm /4), with w—D—%+E, (20)

Egs. (19) and (20 ) plainly require v < 0, while the
following one needs v > 0.

[2 6Dv - 1
bn = —cos(z(5—4n)), with w = V— (21)
3v 6 4v

2.6. Elliptic function solutions

We now show that elliptic function solutions of the dis-
crete equation also exist. The Jacobi cn function solution
has the form

8n = acn (5 Kom, m), 22)
where K is the complete elliptic integral of the first kind.

We write m = 1 — sinh® b, where b is arbitrary. Then the
amplitude is found from

2 _ -2+ r
" 2y (3 + cosh[2b])

a coth() (> 0),  (23)
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where ¥ = 4 + 17Dv — Dvcosh(4b) (> 0), and
w = D — a — (D + 2a*v)tanh(b). The require-
ment on r means that we need to have either Dv > 0
or Dv. < —3z. This produces a sequence of pe-
riod 8, with the ¢,,(n = 0,1,---) being given by
(a, atanh(b), 0, —atanh(b), —a, —a tanh(b), 0, a tanh(b), a, - - )
with b arbitrary. We now consider the special case of

eq. (23 ) when m = 0. While the plus sign case in
eq. (23) gives the zero solution, the minus sign gives
¢ = acos(nm/4), with a> = — 3—(3 with w given in eq.

(20) above. In fact, it is clearly the same solution as eq.
(20). There are also Jacobi sn function solutions.

3. Conclusions

We have studied, analytically, the discrete complex
cubic-quintic Ginzburg-Landau equation. We have found
a set of exact solutions which includes, as particular cases,
bright and dark soliton solutions, constant magnitude so-
lutions, periodic solutions in terms of elliptic Jacobi func-
tions in general form, and particular cases of periodic so-
lutions. We have given the range of parameters where var-
ious of these exact solutions exist. Using numerical simu-
lations, we have found that (some) soliton solutions of the
discrete complex cubic-quintic Ginzburg-Landau equation
are stable, in contrast to the soliton solutions of the discrete
complex cubic Ginzburg-Landau equation.
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