
Basins of Attraction of Phase Patterns in Pulse-Driven Star-Coupled
Wien-Bridge Oscillators with Parameter Deviations

Seiichiro Moro† and Tadashi Matsumoto‡

†Department of Electrical and Electronics Engineering, University of Fukui
3-9-1 Bunkyo, Fukui 910-8507, Japan

‡Department of Electrical and Electronics Engineering, Fukui University of Technology
3-6-1 Gakuen, Fukui 910-8505, Japan,

Email: moro@ppc8100.fuee.fukui-u.ac.jp, matsu@ccmails.fukui-ut.ac.jp

Abstract—In this study, we investigate the basins of
attraction of the phase patterns and clarify the effect of
parameter deviations in pulse-driven star-coupled Wien-
bridge oscillators with parameter deviations. From the sim-
ulation results, it is shown that some phase pattern can be
seen easily and the others can be hardly seen because of
the deviations. Such phenomena can separate the preferred
patterns from undesirable patterns and it is convenient for
the use of the system as some kinds of neural networks.

1. Introduction

There have been many investigations of mutual syn-
chronization and multimode oscillation in coupled oscil-
lators [1]–[4]. In particular, we have reported synchroniza-
tion phenomena observed from N oscillators with the same
natural frequency mutually coupled by one resistor [3, 4].
In LC oscillators systems, we have con rmed that N-phase
oscillation can be stably excited when each oscillator has
strong nonlinearity [3]. In this case, there exist (N − 1)!
stable phase states according to the initial states. Moreover,
we have investigated the coupled system with RC Wien-
bridge oscillators. This system is suitable for VLSI imple-
mentation because the system does not include any induc-
tors. They also exhibit the “phase-shift synchronization”
and we can get 3N−1 different stable phase patterns [4]. Be-
cause these “star-coupled” oscillators exhibit a large num-
ber of different steady states, they would be used as a struc-
tural element of large scale memories and neural networks.

When we use the coupled oscillators systems as neural
networks and large scale memories, it should be an impor-
tant problem how to control the systems to get the appro-
priate phase patterns. To achieve the phase pattern con-
trol, we have proposed the star-coupled system of Wien-
bridge oscillators driven by the periodic pulse train and
con rmed that the stimulation of the pulse train can cause
the phase pattern switching [5]. In this system, however,
only the phase of the oscillator where the pulse train is di-
rectly added switches. Moreover, we have proposed two
types of star-coupled Wien-bridge oscillators whose driv-
ing methods with pulse train are different [6]. In these sys-
tems, though multiple oscillators’ phases can be switched

by pulse train, there are some disadvantages in each sys-
tem. To avoid these problems, we have proposed the star-
coupled systems with some parameter deviations [7]. In
these systems, the phase pattern switching of the succes-
sive multiple oscillators can be achieved due to the devia-
tions. In such systems, it is considered that the symmetry
of the system is collapsed by the parameter deviation. In
this study, we calculate the basins of attraction of the phase
patterns in the star-coupled Wien-bridge oscillators system
stimulated by pulse using SPICE and clarify the effect of
parameter deviations. To derive such basin structures can
be the preparation for controlling the phase patterns in cou-
pled oscillators systems by using these parameters as the
control parameters.

2. Circuit Models

The circuit models are shown in Fig. 1. In this study, we
propose the following two models.

Model 1 The switch unit is connected to Osc 4.

Model 2 The switch unit is connected to the coupling re-
sistor r.

In each model, the switch unit stimulates the star-coupled
Wien-bridge oscillators. In this case, the switch closes ∆t
seconds in every T seconds, and the periodic pulse stim-
ulation with period T is added to the system. T should
be sufficiently large to achieve the synchronization within
the period. The construction of the subcircuits is shown in
Fig. 1 (c).

In both systems, the parameter deviations are provided
by the different capacitance in each C1 ∼ C4. The capaci-
tance Ck is described as follows,

Ck = C + (k − 1)∆C (1)

where C is the capacitance of the capacitor in subcircuit
and ∆C is the deviation parameter. If ∆C is larger, the dif-
ference of the natural frequency of each oscillator becomes
larger.
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Figure 1: Circuit models. (a) Switch unit is connected to
an oscillator (Model 1). (b) Switch unit is connected to the
coupling resistor (Model 2). (c) Construction of subcircuit.
(d) Schematic of the system.
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Figure 2: Lissajours’  gures for ∆C = 10−3µF for Model 1.
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Figure 3: An example of the phase pattern transition when
∆C = 10−3µF for Model 1.

3. Simulation Results

In this section, we show the simulation results in
proposed models by standard circuit simulator package
SPICE. In this study, we use the following circuit parame-
ters: R = 10kΩ, C = 0.015µF, r = 200Ω, R f = 14.7kΩ,
Ri = 4.7kΩ, ∆t = 50µsec, T = 100msec. In the follow-
ing results, A, B and C indicate in-phase, +120◦ and −120◦
phase shift with respect to the phase of Osc 1, respectively.

Figures 2 and 3 show the results for Model 1 and Fig-
ures 4 and 5 show the results for Model 2 when ∆C =

10−3µF. In these models, we can see successive phase
pattern switching of the multiple oscillators due to the pa-
rameter deviations. From the results, it is shown that the in-
phase synchronization of Osc 1 and Osc 4 is hardly seen.
It is considered that this is because the natural frequencies
of these oscillators are more different than the other combi-
nations of the oscillators. Such parameter deviations make
the system asymmetric and they affect the system dynamics
and the derived phase patterns.

Next, we show the precise results of phase pattern
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Figure 6: The notation of the phase patterns.
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Figure 4: Lissajours’  gures for ∆C = 10−3µF for Model 2.
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Figure 5: An example of the phase pattern transition when
∆C = 10−3µF for Model 2.

switching. In the following results, the possible 27 = 34−1

phase patterns are indicated as the notation from a to z and
IP as shown in Fig. 6. In this case, ∆C = 10−3µF and the
single pulse (i.e., not periodic) is added to the system. Ta-
bles 1 and 2 show the phase patterns when the timing of
the pulse and pulse voltage are changed. In these cases, the
phase pattern before adding the pulse is w. In both models,
not so many patterns appear after the pulses are added. As
stated in Table 1, for Model 1, only three patterns v, w and
y are seen. In particular, pattern y is more frequently seen
after the switching from w than the other patterns. In this
case, note that only the phases of Osc 3 and Osc 4 change
after stimulation.

On the other hand, in Model 2, the phase pattern dia-
gram is different from one of Model 1. In particular, there
are some cases where the phase of Osc 2 is changed to A or
C. It suggest that the pulses affect the system more globally
in Model 2. Note that the pattern y is much more frequently
seen than the other patterns. From these results, the pattern
y is more stable than the other patterns because of the pa-
rameter deviations. Therefore, it can be considered that the
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Table 1: 2 parameter phase pattern diagram for Model 1.

Phase

Vc 0
1
5
π

2
5
π

3
5
π

4
5
π π

6
5
π

7
5
π

8
5
π

9
5
π

15 y y v v w w w y y y
14 y y v v w w w y y y
13 y y y v w w w y y y
12 y y y v w w w y y y
11 y y y v v w w y y y
10 y y y y v w w y y y

Table 2: 2 parameter phase pattern diagram for Model 2.

Phase

Vc 0
1
5
π

2
5
π

3
5
π

4
5
π π

6
5
π

7
5
π

8
5
π

9
5
π

15 y y y y y y y y h q
14 y y y y y y y y w w
13 y y y y w y y y y w
12 y y y y h y y y y w
11 y y y y h y y y y w
10 y y y w h y y y w y

deviation of the parameter can be the control parameter of
the phase patterns.

4. Conclusions

In this paper, we show the frequency of appearance of the
phase patterns in pulse-driven star-coupled Wien-bridge
oscillators with the parameter deviations. The symmetry
of the system is collapsed by such parameter deviations,
and they affect the system dynamics and the phase patterns.
From the results, it is shown that some phase pattern can
be seen easily and that some phase patterns can be hardly
seen because of the deviations. Such phenomena can sep-
arate the preferred patterns from undesirable patterns and
it is convenient for the use of the system as some kinds of
neural networks and associative memories.
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