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Abstract—Some statistical analyses of modulo-2 addegvhich are completely independent of each other from a sin-
binary sequences are generalized to mogukddedp- gle chaotic real-valued sequence are also given.
ary sequences. First, we theoretically evaluate statistics
of sequences obtaine_d by modyicddition OT two gen- 5 Synthesis of Generap-ary Sequences by Modulop
eral p-ary random variables. Next, we consider statistics Addition
of moduloy added chaotip-ary sequences generated by a

class of one-dimensional chaotic maps. Let { X, }°°, be a sequence gfary random variables,
where X,, € {0,1,---,p — 1} andp is a positive inte-
1. Introduction ger greater than 1. We denoté:aligit p-ary number by

(ayas - - - ai), wherea; € {0,1,---,p — 1}. A p-ary se-

Binary sequences are the most fundamental randoguence{X,,}5° , is said to bek-distributedif
numbers and have been extensively used in several appli- .
cations such as spread-spectrum CDMA communications _ _ L
and cryptosystems. M-sequences, Kasami sequences, angr((X”X”Jrl Hnh1) = {12+ ax)) = pk @
Gold sequences, all of which can be generated by linear o
feedback shift registers (LFSRs), are well known as coror all k-digit p-ary numbersqi gz - - - i) [5], where P(A)
ventional binary sequences [1]. It is also well known thafl€notes the probability of an evedt Whenk = 1, the
chaos phenomena can be used to generate random numiS&@Uence is just said to Ibalanced We consider @-ary
and have been studied by many researchers, some of whRgfluence Z, }72 = {Xn ® Yn}72,, where
gézjlesr?czgljéged in binary sequences calfebtic binary a&b=(a+b) modp, abe{0,1,.p—1} (2)

. Since modulo-zladdition is one of fqndamental OPeratnaorem 1: Let (X}, and{Y, 1>, be twop-ary se-
tions for binary variables, we have studied statistical pro juences which are statistically independent of each other.
erties of modulo-2 added binary sequences [3]. We hay, p-ary sequence(Z,}, = {X, @ Y}, is k-
shown that if one sequence is balanced iirdi (indepen-  jcibuted i X, )00 "Or”{:{} 1o s I-distributed

: : . nfn=0 nfn=0 .
dent and identically distributedjhen the modulo-2 added Proof: DenoteX,, andY,, by
sequence is also balanced and i.i.d., which is independent " "
of the other binary sequence. Furthermore, we have also p—1 p—1
given some conditions to generate two modulo-2 added se- X, = Z iSi(Xn), Y, = stj(yn)7 3)
guences which are completely uncorrelated to each other i—0 =0
from a single chaotic real-valued sequence.

In this paper, we discuss statistical properties of sewhere
guences obtained by modujoaddition of twop-ary se- Si(z) = {
guences, that is, we generalize some results for modulo-2
added binary sequences to fhary case. First, we theoret- Noting that
ically evaluate statistics of sequences obtained by modulo-
p addition of two general-ary random variables. Under an p—1p—1
assumption, we show that if one sequence-distributed Zy = (1 §)Si(X,)S;(Yn), 5)
then the modulg added sequence is aléedistributed, i=0 j=0
which is independent of the other sequence. )
Next, we consider statistics of modutoadded chaotic We can write

p-ary sequences generated by one-dimensional chaotic p—1p—1
maps. Our theoretical evaluation based on the theory of N S , ,
chaotic dynamical systems [2],[4] shows that if one se- PlZy=a) =3 D S4(i ® J)ES:(X0)S;(Fa)l. (6)
guence is balanced and i.i.d., then the modubmded se-
quence is also balanced and i.i.d., which is independe@hereF|[-] denotes the expectation. Thus we can also write
of the other chaotip-ary sequence. Furthermore, some
conditions for generating two modujoadded sequences Pr({Z, Z, 11" Zntk—1) = {q142 - " - Q&)

23 @)

i=0 j=0
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p—1 p—1

Z Z Slh (il @jl)sh(

i1=0 j1 =0

Xn)Sj1 (Yn)

p—1 p—1

S Sualia @ 2)Si (X1)S5 (Vi)

i5=0 j2=0

p—1 p—1
Z Z SQk ik @]k)s (Xn+k—1)5jk(yn+k—1)

1x=0 5, =0

:ZE

Ji,J2y

Z Sg. (i1 @ j1)Sg, (i2 © j2) - -

11,12,

S, (Yog1) -+ S, (Yagr—1)]

S% (ik D ]k)

E[Sn (X0)Sis (Xn41) -+ Siy (Xnk—1)]. (7)

Assume tha{ X, }5° , is k-distributed. Then we have

Pr(<Xan+1 T Xn+k:71> = <i1i2 to Zk:>)
1
= E[Sil (Xn)Siz (Xn-i-l) T Sik (Xn-‘rk—l” = ﬁ (8)
It is obvious that
p—1
> S,(i@j) =1 foranyqand;. (9)
1=0

Furthermore, we also have

ZEh

J1,d2, 5 Jk

52 (Yog1) -+ S, (Yagr—1)] = 1 (10)

because this means the total probability of all possible

events(Y, Y, i1 Ynie—1) = (ji1j2---jx) Which are
mutually exclusive. Using egs.(7)—(10), we have
1
Pl(ZnZns1- Znyk—1) = (@12 qr)) = o (11)

for any (q1q2 - - - qx
of {Y,}52,. This completes the proof.

3. Modulo-p Added Chaotic p-Ary Sequences

3.1. Preliminaries

The one-dimensional nonlinear difference equation de- = E[Qr, |E[Qr,,] - -

fined by

Tny1 = T(xy), 2, € X =[d,e], n=0,1,2,---, (12)

can produce ahaoticreal-valued orbifx,, }22 ;. We also
denotez,, by 7"(x), wherex = x is called aseed For an
integrable functionG(z), the expectation of G(x,)}52,

is given by
iG] = /Q G(x) f* (2)de

under the assumption thaf-) is mixing on$ with respect

(13)

to an absolutely continuous invariant measure, denoted by

f*(x)dx.

), which is independent of the statistics

We now define the Perron-Frobenius operdtprof the
map7 with an intervall = [d, e] by

d
PG =1 [ Gy )
7 1([d,x])
which can be rewritten as
Z\g, )IG(gr(x)) (15)

for piecewise monotonic onto maps witfi. subintervals,
whereg,.(x) is ther-th preimage of the map(-) [4]. This
operator is powerful in evaluating the statistical properties
because it has the following important property:

/Q G(x) P {H(x)}dz = / G(r(2)) H(z)

Next, let us consider a chaotip-ary sequence
{B(z,)}52, obtained from a chaotic real-valued orbit

{2,}72,, whereB()) € {0,1,---,p — 1}. Let {1}~
be a set op subintervals of a chaotic map satisfying

p—1
Urn=a

dr. (16)

Linlj=¢ (i#)), 17
=0
We define a-ary function by
p—1
=Y Qs (x) (18)
=0
whereQ () is the indicator function defined by
1 (z€])
Qr(r) = { 0 (z¢lI). (19)
It should be noted that
Pr(B(zy) = i) = E[Qr,]. (20)

A sufficient condition for such ap-ary sequence

{B(zn)}>2, to be i.i.d. is given by [2],[6]
P{Qr(2)f"(2)} = E[Qr]f"(x) foralli  (21)
which, in conjunction with eq.(16), gives
Pr{B(zn)B(Tnte,) - B(@ne,_,)) = (iriz - ik))
= E[Qr,, (¢)Qr,, (7" (2)) --- Qr,, (7% (x))]
E[Qr,], (22)
wherek > 1,40y = 0, andl < 4] < by < -+ < 1.
Furthermore, ifE[Q,] = % for all 7, we have
Pr{B(zn)B(Tnte,) + B(@nye,_,)) = (iriz - ix))
- (23)

which implies that the sequencefiddistributed. It is easy
to show that the 2nd-order auto-correlation function de-

fined by
C(6; B) = E[(B(zn) — E[B])(B(zntr) —

is 0 for¢ > 1if the sequence is i.i.d.

E[B])] (24)
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3.2. Auto-Correlation Property

Let {B(zn)}22, and{C(z,)}>2, be two chaotip-ary
sequences generated from a common seeghereC ()

is defined by
p—1
=> jQu, () (25)
j=0

where {J;}/_, ! also satisfies the condition given by

eq.(17). Now consider a newary sequencéD(x,)}>2
obtained by modulg-addition such that

D(z) = B(z)sC(r™(z)) (m=>1),
= EZXN@JQI 5, (7). (26)
=0 j=0

Theorem 2: If {I;}V—, satisfies eq.(21) anB[Q;,] = 1

p

for all 4, then{D(z,)}>2, is balanced and i.i.d., that is,

a k-distributedp-ary sequence as well gsB(z,)}5%,
which is independent of'(-) (i.e., {J;}?=,
Proof: First, we define

p—1p—1
Qu(x) =D D" 8(i @ )Qu(2)Qu, (7™ (x)).  (27)
i=0 j=0
Then we can rewritd (z) as
p—1 R
1) =3 4Q, ) (28)
q=0

Since@q(x) corresponds to the indicator functi@py (x)
for B(x) or C(z), the sufficient condition fof D (z,,)}2,
to be i.i.d. is given by

P{Qq()f*(2)} = ElQ)f

Thus we considerPT{@q(x)
ed.(15), we can write

PAQq(x) f*(x)}

p—1p—1 N,

=33 Si@i) ] lgn(x)

i=0 j=0 r=1

Qz (9r(2))Q1, (7™ (gr(2))) f
_ZQI m— 1

Z g, (x

*(z) forallg. (29)

f*(x)} as follows. From

“(9r(2))

|
—

Sq(i @ j)

I\
=

7

‘QI gr )f*(gr(x)) (30)

Note that

Z g7 (x

|Q1 gr )f*(gr(‘T))

= PA{Qr (x)f

ZQI]‘ ((E) =
=0

Applying egs.(9), (31), and (32) to eq.(30), we obtain

(2)} = (31)

1*
Ef()a

(32)

PAQq(x)f ()}fff()fmmw (33)

which completes the proof.

3.3. Cross-Correlation Property

Consider two chaotip-ary sequence§B(x,,)}22 , and
{C(x ) “o generated by a common seed If both of

{L}, and{J} satisfy eg.(21), we have

E[B(2)C(r"(x))] = E[C(2)B(r"(x))]

= E[B]E[C] (34)

for ¢ > 1, which implies that the two sequences are uncor-
related for/ > 1. Indeed, they are mutually independent
for ¢ > 1 because we have

Pr(B(z,) = q1,C(2nie) = q2)
— BlQu,, (2)Qu,, ((2))
= EQr,]E [QJQZ] (35)

However, they are not always independent nor uncorre-
lated for¢ = 0. As is well known, completely uncorre-
lated sequences are useful in several applications such as
DS/CDMA communication systems. Such completely un-
correlated chaotip-ary sequences can be obtained by de-
signing an appropriate set of indicator functions [2],[6].

Now, we consider two chaoticp-ary sequences
{B(zn)}>2, and{C(xz,)}5>, obtained by

B(z) = Bi(z)® Ba(t™(x)) (m1>1) (36)
Cr) = Ci(x)®Co(r™(x)) (m22>1) (37)
where
By(x) = ZiQ]i(l)(x)v By(r) = ZjQJm(x),
i=0 j=0

—
= Zinw (x) CQ(JZ) =

i=0
We assume tha{tl(1 - (}and{l(2)}p o satisfy

1
Pr{Qo () f"(2)} = Pr{Q;e () [ ()} = ];f*(x),
(39)
thatis,{B(z,)}>2,and{C(x,)}5>, are balanced i.i.cp-
ary sequences, which also implies that they satisfy eqs.(34)
and (35). Thus we consider the caée= 0, that is,

Pr(B(z,) = q1,C () = q2)-
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Lemma: AssumeB; (z) = C(x) in q.(38). Then
Pr(B( n) = a1, C(

(En):q2)
p—1 p—1

- Z Z ElQ ](1) 1—1(.%,))@(](2) (Tm2_1(x))],

P § =0 j,=0 72

(40)
Proof: First we can write

Pr(B(zn) = q1,C(xn) = ¢2)

=F [Z Z Sqi (i1 ® J1) 1“)( )Qjm( " (z))

31=0351=0
-

> Sg, i1 @ 1)y, (i2 @Jz)le( )@ (CU)] -(41)

11,12

p—1

Z S‘Z2 Z2 @jQ 1(2)( )QJ(Q)(

p—1
120]20

=F [Z Q,(n " (2) Q‘,7<2> (" ()

J1,J2

Note thatB; (z) = C (z) (i.e., I = I'*) for all i implies
Q,0 (7)Q = (r) = Q) (x) which, in conjunction with

eq.(9), gives
D Saulin @ 1) Sy, (i2 @J2)Q1<1>( )@ ()

01,12

= Selia®j2) ) Sq i ®j1)Q; ()

12 i1

— Z Sy (i ® jl)QLg) (z). (42)

Substituting eq.(42) into eq.(41) and using egs.(16) and

(39), we obtain eq.(40), which completes the proof.

Theorem 3: In egs.(36) and (37), assume thaf(x) =
C1(x) and either of the conditions such that

(i) m1 < myand{J\"}?~] satisfies eq.(21)

(i) my > mo and{J }’LO satisfies eq.(21)

is satisfied. Furthermore, assuming thﬁtQJm] or
J

E[QJ]@] is equal to}l) for all j, we have

1

Pr(B(z,) = q1,C(zpn) = q2) = p (43)

which implies thatB(x,,) andC(x,,) are independent, and
hence, egs.(34) and (35) hold for &l 0.

Proof: For both cases of (i) and (ii) in Theorem 3, it is

obvious from eq.(40) that

Pr(B( n) = q1,C(n) = q2)
p—1 p—1
- Z > ERQ Q,wIEQ o). (44)
J1 =072=0

Since
p—1 p—1
Z E J(l) Z E J(2> 1 (45)
J1=0 J2=0

we have eq.(43) i[Q ;)] or E[Q ;] is equal to;. This
completes the proof. ’ ’

4. Conclusion

Statistical properties of modulpaddedp-ary sequences
have been discussed. For generary random variables,
we have shown that if one sequencekidistributed, then
the modulop added sequence is algedistributed regard-
less of the other sequence. For chagtiary sequences
generated by a class of 1-D maps, it has been shown that we
can get balanced i.i.ch-ary sequences by modujoaddi-
tion of two chaoticp-ary sequences if one of the sequences
is a balanced i.i.d. one. We have also given the condi-
tions for generating two modulp-added sequences which
are completely independent of each other from a common
chaotic real-valued sequence.
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