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Abstract—Some statistical analyses of modulo-2 added
binary sequences are generalized to modulo-p addedp-
ary sequences. First, we theoretically evaluate statistics
of sequences obtained by modulo-p addition of two gen-
eral p-ary random variables. Next, we consider statistics
of modulo-p added chaoticp-ary sequences generated by a
class of one-dimensional chaotic maps.

1. Introduction

Binary sequences are the most fundamental random
numbers and have been extensively used in several appli-
cations such as spread-spectrum CDMA communications
and cryptosystems. M-sequences, Kasami sequences, and
Gold sequences, all of which can be generated by linear
feedback shift registers (LFSRs), are well known as con-
ventional binary sequences [1]. It is also well known that
chaos phenomena can be used to generate random numbers
and have been studied by many researchers, some of which
are also engaged in binary sequences calledchaotic binary
sequences[2].

Since modulo-2 addition is one of fundamental opera-
tions for binary variables, we have studied statistical prop-
erties of modulo-2 added binary sequences [3]. We have
shown that if one sequence is balanced andi.i.d. (indepen-
dent and identically distributed), then the modulo-2 added
sequence is also balanced and i.i.d., which is independent
of the other binary sequence. Furthermore, we have also
given some conditions to generate two modulo-2 added se-
quences which are completely uncorrelated to each other
from a single chaotic real-valued sequence.

In this paper, we discuss statistical properties of se-
quences obtained by modulo-p addition of twop-ary se-
quences, that is, we generalize some results for modulo-2
added binary sequences to thep-ary case. First, we theoret-
ically evaluate statistics of sequences obtained by modulo-
p addition of two generalp-ary random variables. Under an
assumption, we show that if one sequence isk-distributed,
then the modulo-p added sequence is alsok-distributed,
which is independent of the other sequence.

Next, we consider statistics of modulo-p added chaotic
p-ary sequences generated by one-dimensional chaotic
maps. Our theoretical evaluation based on the theory of
chaotic dynamical systems [2],[4] shows that if one se-
quence is balanced and i.i.d., then the modulo-p added se-
quence is also balanced and i.i.d., which is independent
of the other chaoticp-ary sequence. Furthermore, some
conditions for generating two modulo-p added sequences

which are completely independent of each other from a sin-
gle chaotic real-valued sequence are also given.

2. Synthesis of Generalp-ary Sequences by Modulo-p
Addition

Let {Xn}∞n=0 be a sequence ofp-ary random variables,
whereXn ∈ {0, 1, · · · , p − 1} and p is a positive inte-
ger greater than 1. We denote ak-digit p-ary number by
〈a1a2 · · · ak〉, whereai ∈ {0, 1, · · · , p − 1}. A p-ary se-
quence{Xn}∞n=0 is said to bek-distributedif

Pr(〈XnXn+1 · · ·Xn+k−1〉 = 〈q1q2 · · · qk〉) =
1
pk

(1)

for all k-digit p-ary numbers〈q1q2 · · · qk〉 [5], where Pr(A)
denotes the probability of an eventA. Whenk = 1, the
sequence is just said to bebalanced. We consider ap-ary
sequence{Zn}∞n=0 = {Xn ⊕ Yn}∞n=0, where

a⊕ b ≡ (a + b) mod p, a, b ∈ {0, 1, · · · , p− 1}. (2)

Theorem 1: Let {Xn}∞n=0 and{Yn}∞n=0 be twop-ary se-
quences which are statistically independent of each other.
A p-ary sequence{Zn}∞n=0 = {Xn ⊕ Yn}∞n=0 is k-
distributed if{Xn}∞n=0 or {Yn}∞n=0 is k-distributed.
Proof: DenoteXn andYn by

Xn =
p−1∑

i=0

iSi(Xn), Yn =
p−1∑

j=0

jSj(Yn), (3)

where

Si(x) =
{

1 (x = i)
0 (x 6= i). (4)

Noting that

Zn =
p−1∑

i=0

p−1∑

j=0

(i⊕ j)Si(Xn)Sj(Yn), (5)

we can write

Pr(Zn = q) =
p−1∑

i=0

p−1∑

j=0

Sq(i⊕ j)E[Si(Xn)Sj(Yn)], (6)

whereE[·] denotes the expectation. Thus we can also write

Pr(〈ZnZn+1 · · ·Zn+k−1〉 = 〈q1q2 · · · qk〉)
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= E




p−1∑

i1=0

p−1∑

j1=0

Sq1(i1 ⊕ j1)Si1(Xn)Sj1(Yn)

p−1∑

i2=0

p−1∑

j2=0

Sq2(i2 ⊕ j2)Si2(Xn+1)Sj2(Yn+1)

· · ·
p−1∑

ik=0

p−1∑

jk=0

Sqk
(ik ⊕ jk)Sik

(Xn+k−1)Sjk
(Yn+k−1)




=
∑

j1,j2,···,jk

E[Sj1(Yn)Sj2(Yn+1) · · ·Sjk
(Yn+k−1)]

∑

i1,i2,···,ik

Sq1(i1 ⊕ j1)Sq2(i2 ⊕ j2) · · ·Sqk
(ik ⊕ jk)

E[Si1(Xn)Si2(Xn+1) · · ·Sik
(Xn+k−1)]. (7)

Assume that{Xn}∞n=0 is k-distributed. Then we have

Pr(〈XnXn+1 · · ·Xn+k−1〉 = 〈i1i2 · · · ik〉)
= E[Si1(Xn)Si2(Xn+1) · · ·Sik

(Xn+k−1)] =
1
pk

. (8)

It is obvious that

p−1∑

i=0

Sq(i⊕ j) = 1 for anyq andj. (9)

Furthermore, we also have
∑

j1,j2,···,jk

E[Sj1(Yn)Sj2(Yn+1) · · ·Sjk
(Yn+k−1)] = 1 (10)

because this means the total probability of all possible
events〈YnYn+1 · · ·Yn+k−1〉 = 〈j1j2 · · · jk〉 which are
mutually exclusive. Using eqs.(7)–(10), we have

Pr(〈ZnZn+1 · · ·Zn+k−1〉 = 〈q1q2 · · · qk〉) =
1
pk

(11)

for any〈q1q2 · · · qk〉, which is independent of the statistics
of {Yn}∞n=0. This completes the proof.

3. Modulo-p Added Chaoticp-Ary Sequences

3.1. Preliminaries

The one-dimensional nonlinear difference equation de-
fined by

xn+1 = τ(xn), xn ∈ Ω = [d, e], n = 0, 1, 2, · · · , (12)

can produce achaoticreal-valued orbit{xn}∞n=0. We also
denotexn by τn(x), wherex = x0 is called aseed. For an
integrable functionG(x), the expectation of{G(xn)}∞n=0

is given by

E[G] =
∫

Ω

G(x)f∗(x)dx (13)

under the assumption thatτ(·) is mixing onΩ with respect
to an absolutely continuous invariant measure, denoted by
f∗(x)dx.

We now define the Perron-Frobenius operatorPτ of the
mapτ with an intervalI = [d, e] by

PτG(x) =
d

dx

∫

τ−1([d,x])

G(y)dy (14)

which can be rewritten as

PτG(x) =
Nτ∑
r=1

|g′r(x)|G(gr(x)) (15)

for piecewise monotonic onto maps withNτ subintervals,
wheregr(x) is ther-th preimage of the mapτ(·) [4]. This
operator is powerful in evaluating the statistical properties
because it has the following important property:

∫

Ω

G(x)Pτ{H(x)}dx =
∫

Ω

G(τ(x))H(x)dx. (16)

Next, let us consider a chaoticp-ary sequence
{B(xn)}∞n=0 obtained from a chaotic real-valued orbit
{xn}∞n=0, whereB(·) ∈ {0, 1, · · · , p − 1}. Let {Ii}p−1

i=0
be a set ofp subintervals of a chaotic map satisfying

Ii ∩ Ij = φ (i 6= j),
p−1⋃

i=0

Ii = Ω. (17)

We define ap-ary function by

B(x) =
p−1∑

i=0

iQIi
(x), (18)

whereQI(x) is the indicator function defined by

QI(x) =
{

1 (x ∈ I)
0 (x /∈ I). (19)

It should be noted that

Pr(B(xn) = i) = E[QIi
]. (20)

A sufficient condition for such ap-ary sequence
{B(xn)}∞n=0 to be i.i.d. is given by [2],[6]

Pτ{QIi
(x)f∗(x)} = E[QIi ]f

∗(x) for all i (21)

which, in conjunction with eq.(16), gives

Pr(〈B(xn)B(xn+`1) · · ·B(xn+`k−1)〉 = 〈i1i2 · · · ik〉)
= E[QIi1

(x)QIi2
(τ `1(x)) · · ·QIik

(τ `k−1(x))]

= E[QIi1
]E[QIi2

] · · ·E[QIik
], (22)

wherek ≥ 1, `0 = 0, and1 ≤ `1 < `2 < · · · < `k−1.
Furthermore, ifE[QIi ] = 1

p for all i, we have

Pr(〈B(xn)B(xn+`1) · · ·B(xn+`k−1)〉 = 〈i1i2 · · · ik〉)
=

1
pk

(23)

which implies that the sequence isk-distributed. It is easy
to show that the 2nd-order auto-correlation function de-
fined by

C(`;B) = E[(B(xn)− E[B])(B(xn+`)− E[B])] (24)

is 0 for ` ≥ 1 if the sequence is i.i.d.
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3.2. Auto-Correlation Property

Let {B(xn)}∞n=0 and{C(xn)}∞n=0 be two chaoticp-ary
sequences generated from a common seedx, whereC(x)
is defined by

C(x) =
p−1∑

j=0

jQJj (x), (25)

where {Jj}p−1
j=0 also satisfies the condition given by

eq.(17). Now consider a newp-ary sequence{D(xn)}∞n=0

obtained by modulo-p addition such that

D(x) = B(x)⊕ C(τm(x)) (m ≥ 1),

=
p−1∑

i=0

p−1∑

j=0

(i⊕ j)QIi(x)QJj (τ
m(x)). (26)

Theorem 2: If {Ii}p−1
i=0 satisfies eq.(21) andE[QIi ] = 1

p

for all i, then{D(xn)}∞n=0 is balanced and i.i.d., that is,
a k-distributedp-ary sequence as well as{B(xn)}∞n=0,
which is independent ofC(·) (i.e.,{Jj}p−1

j=0 ).
Proof: First, we define

Q̂q(x) =
p−1∑

i=0

p−1∑

j=0

Sq(i⊕ j)QIi
(x)QJj

(τm(x)). (27)

Then we can rewriteD(x) as

D(x) =
p−1∑
q=0

qQ̂q(x). (28)

SinceQ̂q(x) corresponds to the indicator functionQI(x)
for B(x) or C(x), the sufficient condition for{D(xn)}∞n=0

to be i.i.d. is given by

Pτ{Q̂q(x)f∗(x)} = E[Q̂q]f∗(x) for all q. (29)

Thus we considerPτ{Q̂q(x)f∗(x)} as follows. From
eq.(15), we can write

Pτ{Q̂q(x)f∗(x)}

=
p−1∑

i=0

p−1∑

j=0

Sq(i⊕ j)
Nτ∑
r=1

|g′r(x)|

QIi(gr(x))QIj (τ
m(gr(x)))f∗(gr(x))

=
p−1∑

j=0

QIj
(τm−1(x))

p−1∑

i=0

Sq(i⊕ j)

Nτ∑
r=1

|g′r(x)|QIi(gr(x))f∗(gr(x)). (30)

Note that

Nτ∑
r=1

|g′r(x)|QIi
(gr(x))f∗(gr(x))

= Pτ{QIi(x)f∗(x)} =
1
p
f∗(x), (31)

p−1∑

j=0

QIj (x) = 1. (32)

Applying eqs.(9), (31), and (32) to eq.(30), we obtain

Pτ{Q̂q(x)f∗(x)} =
1
p
f∗(x) for all q (33)

which completes the proof.

3.3. Cross-Correlation Property

Consider two chaoticp-ary sequences{B(xn)}∞n=0 and
{C(xn)}∞n=0 generated by a common seedx. If both of
{Ii}p−1

i=0 and{Jj}p−1
j=0 satisfy eq.(21), we have

E[B(x)C(τ `(x))] = E[C(x)B(τ `(x))]
= E[B]E[C] (34)

for ` ≥ 1, which implies that the two sequences are uncor-
related for` ≥ 1. Indeed, they are mutually independent
for ` ≥ 1 because we have

Pr(B(xn) = q1, C(xn+`) = q2)

= E[QIq1
(x)QJq2

(τ `(x))]

= E[QIq1
]E[QJq2

]. (35)

However, they are not always independent nor uncorre-
lated for ` = 0. As is well known, completely uncorre-
lated sequences are useful in several applications such as
DS/CDMA communication systems. Such completely un-
correlated chaoticp-ary sequences can be obtained by de-
signing an appropriate set of indicator functions [2],[6].

Now, we consider two chaoticp-ary sequences
{B(xn)}∞n=0 and{C(xn)}∞n=0 obtained by

B(x) = B1(x)⊕B2(τm1(x)) (m1 ≥ 1) (36)

C(x) = C1(x)⊕ C2(τm2(x)) (m2 ≥ 1) (37)

where

B1(x) =
p−1∑

i=0

iQ
I
(1)
i

(x), B2(x) =
p−1∑

j=0

jQ
J

(1)
j

(x),

C1(x) =
p−1∑

i=0

iQ
I
(2)
i

(x), C2(x) =
p−1∑

j=0

jQ
J

(2)
j

(x).





(38)

We assume that{I(1)
i }p−1

i=0 and{I(2)
i }p−1

i=0 satisfy

Pτ{QI
(1)
i

(x)f∗(x)} = Pτ{QI
(2)
i

(x)f∗(x)} =
1
p
f∗(x),

(39)
that is,{B(xn)}∞n=0 and{C(xn)}∞n=0 are balanced i.i.d.p-
ary sequences, which also implies that they satisfy eqs.(34)
and (35). Thus we consider the case` = 0, that is,
Pr(B(xn) = q1, C(xn) = q2).
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Lemma: AssumeB1(x) = C1(x) in eq.(38). Then

Pr(B(xn) = q1, C(xn) = q2)

=
1
p

p−1∑

j1=0

p−1∑

j2=0

E[Q
J

(1)
j1

(τm1−1(x))Q
J

(2)
j2

(τm2−1(x))].

(40)

Proof: First we can write

Pr(B(xn) = q1, C(xn) = q2)

= E




p−1∑

i1=0

p−1∑

j1=0

Sq1(i1 ⊕ j1)QI
(1)
i1

(x)Q
J

(1)
j1

(τm1(x))

p−1∑

i2=0

p−1∑

j2=0

Sq2(i2 ⊕ j2)QI
(2)
i2

(x)Q
J

(2)
j2

(τm2(x))




= E


∑

j1,j2

Q
J

(1)
j1

(τm1(x))Q
J

(2)
j2

(τm2(x))

∑

i1,i2

Sq1(i1 ⊕ j1)Sq2(i2 ⊕ j2)QI
(1)
i1

(x)Q
I
(2)
i2

(x)


 . (41)

Note thatB1(x) = C1(x) (i.e., I
(1)
i = I

(2)
i for all i implies

Q
I
(1)
i1

(x)Q
I
(2)
i2

(x) = Q
I
(1)
i1

(x) which, in conjunction with

eq.(9), gives
∑

i1,i2

Sq1(i1 ⊕ j1)Sq2(i2 ⊕ j2)QI
(1)
i1

(x)Q
I
(2)
i2

(x)

=
∑

i2

Sq2(i2 ⊕ j2)
∑

i1

Sq1(i1 ⊕ j1)QI
(1)
i1

(x)

=
∑

i

Sq1(i⊕ j1)QI
(1)
i

(x). (42)

Substituting eq.(42) into eq.(41) and using eqs.(16) and
(39), we obtain eq.(40), which completes the proof.

Theorem 3: In eqs.(36) and (37), assume thatB1(x) =
C1(x) and either of the conditions such that

(i) m1 < m2 and{J (1)
j }p−1

j=0 satisfies eq.(21)

(ii) m1 > m2 and{J (2)
j }p−1

j=0 satisfies eq.(21)

is satisfied. Furthermore, assuming thatE[Q
J

(1)
j

] or

E[Q
J

(2)
j

] is equal to1
p for all j, we have

Pr(B(xn) = q1, C(xn) = q2) =
1
p2

(43)

which implies thatB(xn) andC(xn) are independent, and
hence, eqs.(34) and (35) hold for all` ≥ 0.
Proof: For both cases of (i) and (ii) in Theorem 3, it is
obvious from eq.(40) that

Pr(B(xn) = q1, C(xn) = q2)

=
1
p

p−1∑

j1=0

p−1∑

j2=0

E[Q
J

(1)
j1

]E[Q
J

(2)
j1

]. (44)

Since
p−1∑

j1=0

E[Q
J

(1)
j1

] =
p−1∑

j2=0

E[Q
J

(2)
j1

] = 1, (45)

we have eq.(43) ifE[Q
J

(1)
j

] or E[Q
J

(2)
j

] is equal to1
p . This

completes the proof.

4. Conclusion

Statistical properties of modulo-p addedp-ary sequences
have been discussed. For generalp-ary random variables,
we have shown that if one sequence isk-distributed, then
the modulo-p added sequence is alsok-distributed regard-
less of the other sequence. For chaoticp-ary sequences
generated by a class of 1-D maps, it has been shown that we
can get balanced i.i.d.p-ary sequences by modulo-p addi-
tion of two chaoticp-ary sequences if one of the sequences
is a balanced i.i.d. one. We have also given the condi-
tions for generating two modulo-p added sequences which
are completely independent of each other from a common
chaotic real-valued sequence.
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