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Deterministic Partial Discharge Model with Dissipation
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Abstract—The most simple model of partial discharge °
phenomena is called the three-capacitance equivalent cir-
cuit model. In the former studies, it has been shown by the l
authors that the behavior of the three-capacitance equiva- - Cq G
lent circuit model is complex, even though it is very simple

and completely deterministic. However, it is too simple as
a model of real partial discharge phenomena. In this pa- =c,
per, we investigate the behavior of the three-capacitance
model with dissipation. We show that the behavior of the
discharge rate of the model with dissipation can also be °©
complex, resembling a devil’s staircase.

Figure 1: The three-capacitance equivalent circuit. The dis-
charge gagis and the capacita€y represent the void, and

1. Introduction the capacitor€, andC, represent the other part of the in-

Experimental data observed from partial discharge phé—L'latiO”-
nomena is very complicated and seems stochastic. How-
ever, it has been reported that deterministic properties play

important roles in partial discharge phenomena [1-6]. Therefore, to elucidate deterministic properties of partial
Accordingly, it is possible that stochastic behavior ojischarge model, in this paper, we investigate the three-
partial discharge phenomena is deterministically produceshpacitance equivalent circuit model with dissipation at the
from underlying simple physical process. In fact, we haveischarge site.
shown [7] that such stochastic data can be generated from
the most simple and completely deterministic partial dis-
charge model, which is called the three-capacitance equi¥- The Three-capacitance Model
alent circuit model. - . . :
The three-capacitance equivalent circuit model was pro- '_A‘S ShO_W“ in Fig. 1, the thr_ee-capacnan_ce equivalent cir-
posed more than fifty years ago [8-11]. Since itis very siprUlt consists of three capacitors and a dlscha_rge gap. Ca-
ple, we could analyze the behavior of the model in purel _acm_)ng represents the capacna_nce of the void where par-
mathematical way, and we showed [7] that the model ca l dlscha_rges occur, apd capacn_m§ andG repr.esent.
e capacitance of the insulation in parallel and in series,

be reduced to the map termed double rotation [12, 13, , s : ; .
espectively, with the void. Discharge g&s the element

)

which forms a subclass of interval transformation map- h th hen th | b h iclce:
pings [14]. However, it is too simple as a model of partiaﬁUC that when t e Vo tage between the gap rea =P

: tion voltageV:, a discharge occurs, and the voltage is reset
discharge phenomena. ¢ idual IIt &/* by th i d by th

In real partial discharge phenomend#eets of dissipa- qresl ua \S ag r DY | € compgniﬁ lon cauie di y t'e )
tion and stochasticity cannot be ignored. Since we are ir‘?—ISC arge. bischarges aiso occur in the opposite direction:

terested in underlying deterministic structure of the modeYYhen the voltage between the gap reaciesit is reset to

it is important to know to what extent complicated characyf l_)Y a (_j|_sch_arge n the oppos_|te d|rect|_on. A d'_SCh_afge IS
sitive if its inception voltage i¥/", and is negative if its

teristics of partial discharge phenomena can be producBS

without any stochasticfiects. Inception voltage i%/". . .
Time evolution of the three-capacitance model is shown

*Email: hideyuki@sat.t.u-tokyo.ac.jp in Fig. 2, where a sinusoidal AC voltage is applied to the
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Table 1: Model parameters used in numerical simulations
positive  negative
inception voltage @325 -0.3932
residual voltage @157 -0.1212

lowing equation:

time

u(t) = Vsinwt + (V;" - V sinwtp) exp(—t to), Q)
Figure 2: Time evolution of the three-capacitance equiva- ’

lent circuit model. The thick solid line denotes the actualvheret, andV: respectively denote the time and the resid-
voltageu(t) between the discharge gap. When it reachegal voltage of the previous discharge, arid the time con-

the inception voltag®*, a discharge occurs and the valuestant of the dissipation. Whenis very large, the model
changes discontinuously ¥, respectively. The thin solid can be considered as the original three-capacitance model.
line denotes the applied voltagé), which is the voltage On the other hand, whenis very small, the actual volt-
between the gap, where no discharge is assumed to occutgeu(t) quickly follows the applied voltage(t), and there-

fore discharge bursts occur whilft) exceeds the inception
voltages.

4. Numerical Simulation

We performed numerical simulation of the model with
the parameters shown in Tab. 1 and= 1. Figs. 4, 5, and
| 6 show the graph of discharge rate as a functio¥ dbr
T %o 7 = 8r, &, andn/8, respectively.

Self-similar structure of the devil's staircase can be ob-
served in Figs. 4 and 5. On the other hand, staircase in
Fig. 6 are periodic, which seems to be caused by the dis-

. . . ... charge bursts.
Figure 3: The three-capacitance equivalent circuit with dis- 9

sipation. In comparison with Fig. 1, the resistariRés
added in parallel with the discharge gap 5. Conclusion

We have shown that complex behavior resembling
a devil's staircase can also be observed in the three-
circuit. We defineactual voltageu(t) as the voltage be- capacitance model with dissipation. As decreasing time
tween the gap at timeandapplied voltager(t) as the volt-  constantr, we have seen the transition of the model’s be-
age between the gap where no discharges are assumeg4gior from a devil’'s staircase to a periodic staircase. In-
occur. vestigation of mechanism of this transition is our important
This model is completely deterministic. We have showrfuture problem.
that the behavior of the three-capacitance model is very

complex, even though it is very simple and completely de-
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Figure 4: Discharge rate of the model with large time con-

stant.
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Figure 5: Discharge rate of the model with intermediat

time constant.
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