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Abstract–A modulating input to a differentiable first-

order system results in a limit set (or a ‘belt’) of points for 
the period-1 region in the steady state. The bifurcation 
properties of these ‘belts’ are numerically distinct from the 
fixed points of the equivalent unperturbed maps. It is 
shown that there exist bifurcation points of these belts and 
that their bifurcation diagram retains a structure similar to 
that of the fixed-point of the unperturbed case. It is proved 
that there exists an ordering between the bifurcation points 
of the ‘belt’ of the perturbed system and the fixed point of 
the unperturbed system. It is also shown that fixed 
intervals of a class of first-order perturbed maps 
correspond to fixed points of the second order map where 
the second order map is the class of first-order maps 
composed by itself. 
 
1. Introduction 
 
The bifurcation properties of unperturbed nonlinear 
difference equations are well documented [1]. Figure 1 
shows the bifurcation diagram of the map given by 
 
 ( ) ( ) [ ]..π.φφ +++−= nAnn ee sin21  
 ( )( )( )δφπ +−− 1sin2 1 nK e  ( )π2mod , (1) 
 
for varying values of 1K . The map (1) formed the 
motivation for this work and describes a first-order Digital 
Phase-Locked Loop (DPLL) [3] where,  

=A Modulating amplitude, ( )0=A .  
The map is of the form  
 
 ( ) ( ) qxFxFq += , [ ]AAq ,−. , (2) 
 
and let [ ]{ }AAqFq ,−.=Ι  (3) 
 
where ( )xF  is differentiable on some interval, I . For the 
case 0=A , the fixed point (white line) bifurcates in a 
pitchfork bifurcation at the point 333.01 =K  for the 
values given in figure 1. If the system has a modulated 
input ( )0.A  then the perturbed system is characterized 
in the steady state by a ‘belt’ of points as shown by the 
black region in figure 1. It is clear that the fixed point of 
the unperturbed system forms a ‘skeleton structure’ for  
 

 
this ‘belt’. The size of the ‘belt’ depends on the size of A . 
Note that the term ‘perturbed’ as opposed to ‘forced’ is 
used to describe the class of systems given by (2), as the 
value q  need not be deterministic. For example, q  may 
be white noise restricted to the region [ ]AAq ,−. . Figure 
1 indicates that both the perturbed and unperturbed system 
(1) bifurcate in a similar way and that the point 1K  at 

which the ‘belt’ bifurcates, designated ∗
1K , may not equal 

the bifurcation point of the fixed point of the unperturbed 
system. It is shown below that ∗

1K  in the unperturbed 

system never occurs before ∗
1K  in the perturbed system, 

provided A  is small,  
 
i.e. ( ) ( )AKK ,,0,, 11 .δ.δ ∗∗ =  for 0>> Aε . (4) 
 
More generally, it will be proved that there is an ordering 
at which the bifurcations of the perturbed and unperturbed 
systems occur under certain conditions. 
 
 

 
 

Figure 1: Bifurcation diagram of the system (1) with 
1.0=. , 005.0=. , 0=δ , 0=A  (white) and 02.0=A  

(black). 
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2. Asymptotic Stability of the Fixed Interval 
 
Definition 1─ A Fixed Interval ∗I  is a compact interval, 
which is invariant under qF  for all [ ]AAq ,−. . 
 
Let F  be continuous on I  and A.1 

IIFq .:  for all [ ]AAq ,−. . A.2 

Then, given any closed interval [ ] Iul .,  
 

[ ]( ) ( ) [ ] [ ]{ }AAqulxqxFyyul , ,, ,, −..+==Ι , A.3 
is a closed interval [ ] Iul .',' . 
Hence the class of maps Ι  maps closed intervals in I  to 
closed intervals in I . 
Let , 
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Note: If [ ] IulI .= ∗∗∗ ,  is a fixed interval of Ι  then 
( ) ∗∗ =Ι II , i.e. 
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 is a fixed point of F~  then 

[ ]∗∗∗ = ulI ,  is a fixed interval of Ι . 
 
Definition 2─ When F  satisfies (A.1)/(A.2) then a fixed 

interval [ ] IulI .= ∗∗∗ ,  of Ι  is asymptotically stable if 
the corresponding fixed point of F~  is asymptotically 
stable. 
 

 
Figure 2: Invariant region IS  given by the meshed 

section. 
 

Main Theorem 
 
Given F , qF  and Ι  as in (2-3), if 
 
(i) F  is differentiable on a compact interval I . 
(ii) IIFq .:  for all [ ]AAq ,−. , 

(iii) ( ) 1' <= .xF  for all Ix . . 
(iv) F  is strictly monotone on I . 
 
Then 
 
1. For each [ ]AAq ,−.  there exists a unique fixed point 

Ixq .∗  of qF . 
 
2. There exists a unique asymptotically stable fixed 

interval [ ] IulI .= ∗∗∗ ,  of Ι . 
 
3. If F  is strictly monotone increasing then 

[ ]{ }AAqxI q ,−.= ∗∗ . 
 
 
Proof (1) 
 
Lemma 1 
 
Under the conditions of the main theorem there exists a 
unique fixed point Ixq .∗ of qF  for all [ ]AAq ,−. . 
 
1 follows directly from lemma 1. 
 
Proof (2) 
 
Case 1: F  is strictly monotone increasing on I . 
 
Then by A.3 and by the definition of F~ , 
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Lemma 2 
 
Under the conditions of the main theorem, F~  of (6) has a 
unique fixed point in IS . 
 

Let IS
u
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 equal the unique fixed point in IS  of F~ .  

 

Then [ ] Iul .∗∗ ,  is a unique fixed interval of Ι . 
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The Jacobian of F~  at ( )
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Moreover by (iii), 
 ( ) 1' <∗lF  and ( ) 1' <∗uF .  (8) 

since Iul .∗∗ , . Hence 2 follows by definition 2. 
 
 
Case 2: F  is strictly monotone decreasing on I . 
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By Lemma 2, the map F~  has a unique fixed point in IS . 
 

Let IS
u
l .











∗

∗
 equal the unique fixed point in IS  of F~ . 

Then [ ] Iul .∗∗ ,  is a unique fixed interval of Ι . 
 
Using a similar procedure as in case 1 the Jacobian matrix, 
J , is found to be equal to 
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Moreover by (iii), 
 ( ) 1' <∗lF  and ( ) 1' <∗uF .  (11) 

since Iul .∗∗ , . Hence 2 follows by definition 2. 
 
      .  
 
Proof (3) 
 
As ∗

qx  is a unique fixed point in I  of qF  then 
 
 ( ) qxFx qq += ∗∗ .   (12) 
 
The derivative of (12) with respect to q  is equal to  

 ( ) 1''' += ∗∗∗
qqq xxFx .   (13) 

i.e. 

 ( ) 0
1

1
''1

1' >
−

=
−

=
∗

∗

.q
q

xF
x ,  by (iii) as 1<.  (14) 

 
which implies that ∗

qx  is strictly monotone increasing and 

continuous for all [ ]AAq ,−. . Therefore, 

[ ]{ } [ ]∗∗
−

∗+ =−.= AAq xxAAqxI ,,  is a closed interval in 
I . 
 ( ) ( ) [ ]{ }AAqIxqxFyyI , ,' , −..+==Ι +  (15) 

 ( ) [ ]{ }AAqqqxFyy q ,, , 11
−.+== ∗  (16) 

 [ ]{ }AAqqqqxyy q ,, , 111
−.+−== ∗  (17) 

 
case 1: ( ) 0' >∗

qxF  
 
 1' >∗

qx . (18) 
This implies that 
 

11
qxq −∗  must be strictly monotone increasing in 1q . 

 
 AAxAqx Aq +−=+− ∗∗

11
 (19) 

 
 AAxAqx Aq +−=−− ∗

−
∗

11
 (20) 

 
therefore  
 
 ( ) ( )++ =Ι II  (21) 
 
      .  
 
 
3 Corollary 1 
 
Under the conditions of the main theorem if F  is 
continuously twice differentiable on I  and ( )xF ''  is sign 

definite on ∗I , then the region of stability of the �belt� of 
the perturbed system contains the region of stability of the 
fixed point of the unperturbed system.  
 
Consider the example of the first-order DPLL, (1). Using 
the values as given in figure 1, the fixed point of (1) is 
equal to 
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x  (22) 

 
Considering the value 32.01 =K , the fixed point is equal 

to 3178.00 =∗x . Let, 
 
 ( ) ( )xKxxF sin22.0 1ππ −+=  for all [ ]3,3−.x  
 
Condition (i) holds as F  is differentiable on [ ]3,3− . 
 
Let , 
 [ ] [ ]3,3, −.= ulI  (23) 
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Condition (iii) implies  
 
 ( ) ( ) 1cos21' 1 <−= xKxF π  therefore, 
 ( ) ( ) 2cos32.02 <lπ  
 
 therefore, 1028.0=l . (24) 
 
Condition (iv) says that ( ) 0' <xF  for all [ ]ulx ,.   
Therefore,  
 
 ( ) ( ) 1cos32.02 >uπ  
 therefore, 05.1<u . (25) 
 
Condition (ii) implies 
 
 ( ) ( ) ( ) qxxxFq +−+= sin325.022.0 ππ  (26) 

 ( ) ( )[ ] Axx ++−= ππ 2.0sin325.02  (27) 
 ( ) ( )[ ] ull =++−= 01.02.0sin325.02 ππ  (28) 
 ( ) ( )[ ] luu =−+−= 01.02.0sin325.02 ππ  (29) 
 
Let [ ]48.0,166.0=I . ( ) [ ]4721.0,1699.0=IFq , therefore, 

the interval [ ] ∗.= II 48.0,166.0  satisfies condition (ii) 

and F  is sign definite on ∗. II . 
 

( ) 0'' >xF  for all [ ]48.0,166.0.x . Therefore, ( )xF ''  is 

sign definite on the fixed interval ∗I  and there is an 
ordering for which the perturbed and the unperturbed 
systems (1) bifurcate,  
i.e. ∗

0x  is asymptotically stable if ∗I  is asymptotically 
stable.  
 
 
4. Conclusion 
 
This paper has shown that bifurcation points of the class 
of maps described by (2) exist that retain a similar 
structure to the bifurcation diagram of the equivalent 
unperturbed map. This paper also presented the proof that 
the region of stability of the ‘belt’ of the perturbed system 
contains the region of stability of the fixed point of the 
unperturbed system. If the function describing the system, 
(2), is continuously twice differentiable and sign definite 
on the fixed interval and the conditions of the main 
theorem hold then there is an ordering for which the 
perturbed system and the unperturbed system bifurcate. 
Finally, it was shown that there exists a relationship 
between the map F~  and the class of maps Ι , namely: 
asymptotically stable fixed points of the map F~  
correspond to asymptotically stable fixed intervals of Ι . 
Therefore, the analysis can be treated as a fixed-point 
analysis. 
 

5. Appendix 
 
Proof of Lemma 1  
 
  Ixx . , 21 ,   (30) 

 ( ) ( ) ( ) ( )2121 xFxFxFxF qq −=−   (31) 

 ( )( ) 2121' xxxxcF −=−= . , by (iii)  (32) 
 
where [ ] Ixxc .. 21 , . 
 ( ) 1' <= .xF  for all Ix . .  (33) 
 
Moreover, IIFq .:  by (ii). Since I  is compact the 
result follows by the contraction mapping principle. 
 
     .  
 
Proof of Lemma 2 
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 ( ) ( ) ( ) ( ){ }2121 , lFlFuFuFMax −−=  (35) 

 { }2121 , lluuMax −−= ..  (36) 
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By the contraction mapping principle F~  takes points in 

IS  to points in IS . 
 
      .  
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