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Abstract—A modulating input to a differentiable first-
order system resultsin alimit set (or a‘belt’) of points for
the period-1 region in the steady state. The bifurcation
properties of these ‘belts’ are numerically distinct from the
fixed points of the equivalent unperturbed maps. It is
shown that there exist bifurcation points of these belts and
that their bifurcation diagram retains a structure similar to
that of the fixed-point of the unperturbed case. It is proved
that there exists an ordering between the bifurcation points
of the ‘belt’ of the perturbed system and the fixed point of
the unperturbed system. It is also shown that fixed
intervals of a class of first-order perturbed maps
correspond to fixed points of the second order map where
the second order map is the class of first-order maps
composed by itself.

1. Introduction

The bifurcation properties of unperturbed nonlinear
difference equations are well documented [1]. Figure 1
shows the bifurcation diagram of the map given by

0, (n)=¢,(n-1)+27. +Asin] n+. |
— 27K, (sin(g, (n~1))+6) mod(27), (1)
for varying values of K;. The map (1) formed the
motivation for this work and describes a first-order Digital

Phase-Locked Loop (DPLL) [3] where,
A =Modulating amplitude, (4 =0).
The map is of the form

F,(x)=F(x)+q, q. [-4,4],

2

and let 1={F|q. [-4 4]} 3)
where F(x) is differentiable on some interval, I . For the
case A=0, the fixed point (white line) bifurcates in a
pitchfork bifurcation at the point K; =0.333 for the
values given in figure 1. If the system has a modulated
input (4. 0) then the perturbed system is characterized
in the steady state by a ‘belt’ of points as shown by the
black region in figure 1. It is clear that the fixed point of
the unperturbed system forms a ‘ skeleton structure’ for

this ‘belt’. The size of the ‘belt’ depends on the size of 4.
Note that the term ‘perturbed’ as opposed to ‘forced’ is
used to describe the class of systems given by (2), as the
value ¢ need not be deterministic. For example, ¢ may
be white noise restricted to the region ¢. [-4, 4]. Figure

1 indicates that both the perturbed and unperturbed system
(1) bifurcate in a similar way and that the point K, at
which the ‘belt’ bifurcates, designated K, , may not equal
the bifurcation point of the fixed point of the unperturbed
system. It is shown below that K; in the unperturbed

system never occurs before K, in the perturbed system,
provided 4 issmall,
e K;(5,. 0)=K; (5, ,4) for > 4>0.

(4)

More generally, it will be proved that there is an ordering
at which the bifurcations of the perturbed and unperturbed
systems occur under certain conditions.
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Figure 1: Bifurcation diagram of the system (1) with
. =01,. =0.005, =0, 4=0 (white) and 4=0.02
(black).
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2. Asymptotic Stability of the Fixed Interval

Definition 1— A Fixed Interval 1" is a compact interval,
which is invariant under F, for all q. [—A, A].

Let F becontinuouson / and A.l
F 1. I fordl q. [-4,4]. A2
Then, given any closed interval [7,u]. 1

I([Z,u])={y|y=F(x)+q,x. [l,u],q. [—A,A]}, A3

isaclosedinterval [I',u']. I.
Hence the class of maps I maps closed intervalsin 7 to
closed intervalsin 1 .

T e

)
Given { } S, ., e
u

©)

p
} S, be gven by
u

[, u]=1([l,u]),i.e Associated with 1 thereisamap F

~
from S; to §; suchthat[ , :F[ }
u u

Note: If 7* :[lu] . I is afixed interva of I then

I(I”‘)=1”‘,i.e.
Fl| . l|=| .| Hence | _ | is a fixed point of F .
u u u
Moreover, if {l*} S; is a fixed point of F then
u

I’ :[Z*,u*] isafixed interval of 1 .

Definition 2— When F satisfies (A.1)/(A.2) then a fixed
interval 1" 2[1*,u*] .

the corresponding fixed point of F s asymptotically
stable.

1 of 1 is asymptotically stable if

Ir
IO I —1
| |
: -
[ s
Figure 2: Invariant region S, given by the meshed

section.

Main Theorem

Given F, F, and 1 asin (2-3), if

(i) F is differentiable on a compact interval I .
(i) F,:1. I forall q. [-4,4],

(iii) |F'(x)|=. <l forall x. I.

(iv) F is strictly monotone on I .

Then

1. For each q. [—A,A] there exists a unique fixed point
x: . I of F,.

q

2. There exists a unique asymptotically stable fixed
interval 1" 2[1*,u*] . L of 1.

If F is strictly monotone then

3
1 ={clg. [-4,4]

increasing

Proof (1)
Lemmal

Under the conditions of the main theorem there exists a
unique fixed point x; . Lof F, forall q. [—A,A].

1 follows directly from lemma 1.
Proof (2)

Case 1: F is strictly monotone increasing on 1 .

Then by A.3 and by the definition of F

M

Lemma 2

(6)

Under the conditions of the main theorem, F of (6) has a
unique fixed point in S .

£

Let {Z } S, equal the unique fixed pointin S, of F.
u

Then [I*u*] . I isaunique fixed interval of I .
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The Jacobianof 7 at |’ |=J= i) o | @
u 0 F(u )
Moreover by (iii),
|7 ) <1 andt (e ) <1 ®)
since I*,u” . I.Hence 2 follows by definition 2.
Case 2: F is strictly monotone decreasing on 1 .
~ [ I' Flu)-A4
Al []<[Fe-4] ©)
u u' F(l)+A

By Lemma 2, the map F has a unique fixed pointin S, .
Let !
u

Then [Z*,u*] .

} S, equal the unique fixed point in S, of F.
I isaunique fixed interval of T .

Using asimilar procedure as in case 1 the Jacobian matrix,
J , isfound to be equal to

_ 0* F (u ) , (10)
i) o
Moreover by (iii),
|7 ) <1 andt [l ) <1 (11)
since I*,u” . I.Hence 2 follows by definition 2.
Proof (3)
As x; isaunique fixed pointin 7 of F, then
x; F(x; )+q (12)
The derivative of (12) with respect to ¢ isequal to
wi= e e (13)
i.e.
£ 1 1
x,'= — = >0, by (iii)as . <1 (14)
)

#

q
continuousfor all g. [-A4, 4]. Therefore,

which implies that x, is strictly monotone increasing and

It :{x; q. [—A,A]}: [fo,xZ] is a closed interval in

I.

I(I*)z{y|y=F(x)+q,x. I'yq. [—A,A]} (15)

= {V‘y = F(x; )+ 4,919 [-4, A]} (16)
= {y‘y=x; ~G1+4, 41,9 [—A,A]} 17)
case I: F'(x!)>0
x> 1. (18)
Thisimplies that
x; — g, must be strictly monotone increasing in g; .
Xy —qi+A=x,—A+4 (19)
Xy —q1—A=x,—A+4 (20)
therefore
1(r+)=(r7) (21)
3Corollary 1

Under the conditions of the main theorem if F s
continuously twice differentiable on I and F''(x) is sign

definite on 1", then the region of stability of the ‘belt’ of
the perturbed system contains the region of stability of the
fixed point of the unperturbed system.

Consider the example of the first-order DPLL, (1). Using

the values as given in figure 1, the fixed point of (1) is
equal to

(22)
Considering the value K; =0.32, the fixed point is equal
to xg = 0.3178. Let,

F(x)=x+0.27 - 27K, sin(x) foral x. [-33]
Condition (i) holds as F isdifferentiable on [-3.3].

Let,

I=[lu]. [-33] (23)
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Condition (iii) implies

|F" (x) =[1— 27K, cos(x) <1 therefore,

27(0.32)cos(l) < 2
therefore, [ =0.1028. (24)
Condition (iv) saysthat F'(x)<0 forall x. [/,u]
Therefore,
27(0.32) cos(u) > 1
therefore, u <1.05. (25
Condition (ii) implies
F,(x)=x+0.27 - 27(0.325)sin(x)+¢ (26)
= [x-27(0.325)sin(x)]+ 0.2z + 4 (27)
=[1-272(0.325)sin(!)]+ 0.2z +0.01=u (28)
=[u-27(0.325)sin(u)]+0.27-0.01=1  (29)

Let 7=[0.166,048]. F,(7)=[0.1699,0.4721], therefore,

the interval 7 =[0.166,0.48]. I* satisfies condition (ii)
and F issigndefiniteon 7. 7°.

F"(x)>0 for al x. [0.166,0.48]. Therefore, F''(x) is

sign definite on the fixed interval I* and there is an
ordering for which the perturbed and the unperturbed
systems (1) bifurcate,

i.e. xp is asymptotically stable if 7* is asymptotically
stable.

4. Conclusion

This paper has shown that bifurcation points of the class
of maps described by (2) exist that retain a similar
structure to the bifurcation diagram of the equivalent
unperturbed map. This paper also presented the proof that
the region of stability of the ‘belt’ of the perturbed system
contains the region of stability of the fixed point of the
unperturbed system. If the function describing the system,
(2), is continuoudly twice differentiable and sign definite
on the fixed interval and the conditions of the main
theorem hold then there is an ordering for which the
perturbed system and the unperturbed system bifurcate.
Finally, it was shown that there exists a relationship

between the map F and the class of maps 1 , namely:
asymptotically stable fixed points of the map F
correspond to asymptotically stable fixed intervals of 1 .

Therefore, the analysis can be treated as a fixed-point
analysis.

5. Appendix

Proof of Lemma 1

Xy, %5, 1, (30)

|Fq (xl)_Fq (x21=|F(xl)—F(x2)| (31)

=[F'(c)(ry —x3) = . |x1 — x|, by (i) (32)
where ¢. [x3,x,]. I.

|F'(x)|=. <lforal x. I. (33)

Moreover, F, :1. [ by (ii). Since / is compact the
result follows by the contraction mapping principle.

Proof of Lemma 2

_Ii((l))_ Iﬂ for casel.

F{l}: LT ,where F:S,. S,.
! F(u)_A for case 2
F(l)+4 '

_ Flh)- ) for casel
F{ll —F|:12} _JIFw) - Fluo) ()
m] el ||Fle)=Flo for case2
Fh)-F(,) |
= Max{F(u,) - Flu, |, |F()-F(, )} (39)

= Max{. |uy —up), . [l ~1,|} (36)
ol b i Y R
U —uz |, U] M2 g

By the contraction mapping principle F takes points in
S, topointsin S, .
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