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Abstract—There is a topological conjugation between
the Bernoulli and tent maps. In this paper, it is proved that
there is also a topological conjugation between two types of
periodic sequences generated by nonlinear feedback shift
registers which can be regarded as one-dimensional maps
obtained by quantizing the Bernoulli and tent maps.

1. Introduction

Pseudo random numbers are required in several appli-
cations including Monte Carlo method, spread spectrum
communication, cryptography, and so on. Representatives
of pseudo random numbers are linear and nonlinear shift
register sequences such as M-sequences and de Bruijn se-
quences [1]. On the other hand, as a quite different ap-
proach, random number generation based on chaos has
been increasingly studied by many researchers. Chaos is
random behavior produced by deterministic systems. The
simplest chaotic system is a one-dimensional discrete-time
nonlinear dynamical system.

Shift register sequences are mostly designed by means
of finite field theory and chaotic ones are based on nonlin-
ear dynamical systems treating real numbers. Therefore,
there are seemingly no relationship between shift register
sequences and chaotic ones even if there is a common sense
that both sequences are generated by deterministic systems.
However, the following works show some relations be-
tween shift register sequences and chaotic ones. An inter-
esting insight is firstly pointed out in [2], which reveals that
M-sequences generated from linear feedback shift registers
(LFSRs) are one of finite-word-length approximation to the
Bernoulli map. As in [3], it is easy to show that nonlin-
ear feedback shift registers (NFSRs) are also one of finite-
word-length approximation to the Bernoulli map. Further-
more, finite-word-length approximation of the tent map is
realized by another type of nonlinear feedback shift register
called extended nonlinear feedback shift register (e-NFSR)
in [3]. Generation algorithm of maximal-period sequences
(including m-ary de Bruijn sequences) generated by quan-
tizing a class of chaos maps is proposed in [4].

It is well known that the Bernoulli map and tent map
can be transformed into each other by a function. This re-
lation is called a topological conjugation [5]. In [6], it is
also revealed that there is a linear transformation between
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(a) Bernoulli map. (b) Tent map.

Figure 1: Bernoulli and tent maps.

two forms of NFSR, whose concept is quite analogous to
a topological conjugation. In this paper, we prove a topo-
logical conjugation between periodic sequences generated
by NFSRs and e-NFSRs, which can be regarded as finite-
word-length version of the relation between the Bernoulli
and tent maps.

2. Bernoulli and Tent map

We firstly introduce the Bernoulli and tent maps, which
are well-known chaotic maps respectively defined by

xn+1 = τB(xn) =

{
2xn (0 ≤ xn <

1
2 )

2xn − 1 ( 1
2 ≤ xn < 1),

(1)

yn+1 = τT (yn) =

{
2yn (0 ≤ yn <

1
2 )

2(1 − yn) ( 1
2 ≤ yn < 1).

(2)

Figs.1 illustrate the Bernoulli and tent maps.
It is well known that the Bernoulli and tent maps are

topologically conjugated, which means that they can be
transformed into each other by a conjugation function h(x)
satisfying [5]

h(τB(x)) = τT (h(x)). (3)

A diagram of the concept of the topological conjugation
will be shown in Fig.4 (a). In [5], a conjugation function
h(x) is given by

h(x) =

∞∑

j=1

b j(x)2− j, b j(x) ∈ {0, 1}. (4)
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(a) NFSR.

�
�

�
��
�
����
���
���
��	
��

� �



	
�

� � � 	 
 � � � � � � ��� ��	 ��
 � ����

��
���

�

��
�

(b) An example of 1-D map (k = 4).

Figure 2: NFSR and its 1-D map.

Here b j(x) are obtained by the following recurrence rela-
tion:

b j+1(x) = b j(x) ⊕ a j+1(x) ( j = 0, 1, 2, · · ·), (5)

where b0(x) = 0, ⊕ denotes modulo-2 addition, and a j is
determined by the binary expansion of x written as

x =

∞∑

j=1

a j(x)2− j, a j(x) ∈ {0, 1}. (6)

Note that the Bernoulli map τB(x) can be expressed as

τB(x) =

∞∑

j=1

a j+1(x)2− j. (7)

3. Finite-Word-Length Approximation of Chaotic Se-
quences

We introduce NFSRs and extended NFSRs which can be
considered as generators of quasi-chaotic sequences with
finite precision [3].

3.1. NFSR

Fig.2 (a) shows a nonlinear feedback shift register
(NFSR) with k memory cells, where the feedback function
g(·) is a mapping of GF(2)k to GF(2). Denote a state of
the register by the column vector a = (a1, a2, · · · , ak) ∈
GF(2)k. Let T be the next-state operator, then T (a) de-
notes the next state of an NFSR with current state a.
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(a) extended NFSR.
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(b) An example of 1-D map (k = 4).

Figure 3: Extended NFSR and its 1-D map.

Namely, by clocking the NFSR, a is succeeded by T (a) =

(a2, a3, · · · , ak, g(a1, a2, · · · , ak)) ∈ GF(2)k which is repre-
sented by [6]

T (a) = Aa ⊕ g(a)u, (8)

where g(a) indicates the nonlinear feedback function map-
ping GF(2)k to GF(2), A is the k × k matrix defined by

A =



0 1 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 · · · 0 1
0 0 · · · 0


, (9)

and u is the column vector such that

u = (0, 0, · · · , 1) ∈ GF(2)k. (10)

Next, let us transform a state of the register at time n into
a decimal integer xn ∈ [0, 2k − 1] as

xn = a1(n) · 2k−1 + a2(n) · 2k−2 + · · · + ak(n) · 20, (11)

where ai(n) ∈ GF(2) denotes a value of ith element of
the register at time n. We can construct one-dimensional
maps by plotting (xn, xn+1). An example of such a 1-D
map is shown in Fig.2 (b), where k = 4. It is easily
found from Fig.1 (a) and Fig.2 (b) that the shapes of such
one-dimensional maps are similar to the Bernoulli map.
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Namely, NFSRs are finite-word-length approximation to
the Bernoulli map.

Maximal-period sequences generated from such NFSRs
are called de Bruijn sequences whose period is 2k. It is
known that the number of possible NFSR sequences is
equal to 22k−1

and the number of de Bruijn sequences is
equal to 22k−1−k [1], [7].

3.2. Extended NFSR

Fig.3 (a) shows an extended NFSR (e-NFSR) with k
memory cells, where the feedback function is g′(·). We
also denote a state of the register by the column vector
a′ = (a′1, a

′
2, · · · , a′k) ∈ GF(2)k. Similarly to NFSRs, the

transition manner can be represented as

T ′(a′) = A′a′ ⊕ g′(a′)u, (12)

where T ′ is the next state operator for extended NFSRs and
A′ is the k × k matrix defined by

A′ =



1 1 · · · 0
1 0 1 · · · 0
...

...
. . .

...
1 0 · · · 0 1
0 0 · · · 0


. (13)

Fig.3 (b) shows an example of a 1-D map obtained by
transforming the register states into integer values with
eq.(11) as well as the NFSR case. From Fig.1 (b) and Fig.3
(b), we can also find that such 1-D maps are similar to the
tent map. Thus, e-NFSRs can be considered as finite-word-
length approximation to the tent map.

4. Equivalence of Periodic Sequences Generated by
NFSRs and e-NFSRs

We show here the fact that there is a one-to-one transfor-
mation Ha = a′ satisfying

HT (a) = T ′(Ha) (14)

which is a kind of topological conjugation between NFSRs
and e-NFSRs corresponding to eq.(3) for the chaotic maps
as shown in Fig.4.

Theorem: A one-to-one mapping Ha = a′ satisfying
HT (a) = T ′(Ha) for all state a exists.

Proof: Denote the mapping H by the k × k matrix:

H =



h1,1 h1,2 · · · h1,k
h2,1 h2,2 · · · h2,k
...

...
. . .

...
hk,1 hk,1 · · · hk,k


. (15)
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’
(a) Bernoulli and tent (b) NFSR and e-NFSR

Figure 4: The concept of topological conjugation between
Bernoulli and tent maps (a) and the one-to-one transforma-
tion matrix H (b).

Using eqs.(8)–(10), (12), (13), and (15), we obtain

HT (a) = H(Aa ⊕ g(a)u)

=



h1,1a2 ⊕ h1,2a3 ⊕ · · · ⊕ h1,k−1ak ⊕ h1,kg(a)
h2,1a2 ⊕ h2,2a3 ⊕ · · · ⊕ h2,k−1ak ⊕ h2,kg(a)

...
hk,1a2 ⊕ hk,2a3 ⊕ · · · ⊕ hk,k−1ak ⊕ hk,kg(a)


(16)

T ′(Ha) = A′Ha ⊕ g′(a′)u =



(h1,1 ⊕ h2,1)a1 ⊕ (h1,2 ⊕ h2,2)a2 ⊕ · · · ⊕ (h1,k ⊕ h2,k)ak

(h1,1 ⊕ h3,1)a1 ⊕ (h1,2 ⊕ h3,2)a2 ⊕ · · · ⊕ (h1,k ⊕ h3,k)ak
...

(h1,1 ⊕ hk,1)a1 ⊕ (h1,2 ⊕ hk,2)a2 ⊕ · · · ⊕ (h1,k ⊕ hk,k)ak

g′(a′)


.

(17)

Thus, the proof will be complete if we can identify a non-
singular transition matrix H and the feedback function g′(·)
from eqs.(14), (16), and (17).

Under the condition that eq.(14) holds for arbitrary a and
g(·), we can get the following equations concerning the co-
efficients h j,k and the feedback function g′(·).

h j,1 = h1,1 (2 ≤ j ≤ k) (18)
h j,k = 0 (1 ≤ j ≤ k − 1) (19)
h j,l = h1,l+1 ⊕ h j+1,l+1 (1 ≤ j, l ≤ k − 1) (20)

g′(a′) = hk,1a2 ⊕ hk,2a3 ⊕ · · · ⊕ hk,k−1ak ⊕ hk,kg(a). (21)

First, solving eqs.(18)–(20), we can get the nonsingular
matrix H as

H =



1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1


. (22)

which is a lower triangular matrix and has its inverse matrix
H−1 is given by

H−1 =



1 0 · · · 0 0
1 1 · · · 0 0
0 1 · · · 0 0
...

...
. . .

. . .
...

0 0 · · · 1 1


. (23)
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(a) NFSR (b) extended NFSR

Figure 5: The directed graphs, where k = 3. Each node is
transformed into each other by the matrices H and H−1.

Next, from eqs.(21) and (22), we have

g′(a′) = a2 ⊕ a3 ⊕ · · · ⊕ ak ⊕ g(a). (24)

Thus the proof is completed.
In [3], the number of maximal-period sequences gen-

erated from e-NFSRs is investigated by numerical experi-
ments in the case for k = 3, 4, 5. Here we can show the fol-
lowing corollary concerning the number of maximal-period
sequences generated from e-NFSRs.

Corollary: The number of maximal-period sequences gen-
erated from e-NFSRs is 22k−1−k, that is, as same as de Bruijn
sequences.

Proof: The above theorem shows that every state and its
next state of NFSRs can be transformed to those of e-NFSR
by the one-to-one mapping H under the condition that g′(·)
satisfies eq.(24). Hence, it is obvious that the total number
of possible sequences and maximal-period sequences gen-
erated from e-NFSRs are equal to those of NFSR, that is,
22k−1

and 22k−1−k, respectively [1],[7].

Remark 1: Since a′0 = a0 in a’ = Ha, every output of
NFSRs with an initial state is the same as that of e-NFSRs
with the corresponding initial state under the assumption
that eq.(24) is satisfied. This implies that all of de Bruijn
sequences can also be generated by e-NFSRs.

Remark 2: The relation eq.(5) can also be expressed by



b1
b2
b3
b4
...


=



1 0 0 0 · · ·
1 1 0 0 · · ·
1 1 1 0 · · ·
1 1 1 1 · · ·
...

...
...

...
. . .





a1
a2
a3
a4
...


, (25)

where x is dropped for simplicity. The transformation ma-
trix of eq.(25) is equivalent to H given by eq.(22) except
the difference of the size of dimension. This implies that H
is a finite dimension version of h(x) given in eq.(4).

Remark 3: The transition manner of states of NFSRs
is represented by a directed graph with 2k nodes [1],[7],
where every node denotes a state of register and has in-
degree and out-degree 2. Fig.5 (a) shows the directed graph
for k = 3. A path in the graph is determined by g(·) under
the restriction that every node can be gone through once
and only once. By using a′ = Ha, we can easily obtain
the directed graph of e-NFSRs, as shown in Fig.5 (b). We
can also transform any path in one graph into a path in the
other graph by the transition matrices (H,H−1) and eq.(24).
It is easy to see the equivalence of NFSRs and e-NFSRs in
Fig.5.

5. Conclusion

In this paper, we have shown the one-to-one mapping
between periodic sequences generated by NFSRs and e-
NFSRs, which is quite analogous to a topological conju-
gation function between the Bernoulli and tent maps. We
find that a lower triangular matrix can transform the states
of NFSRs and e-NFSRs into each other. The relation can be
considered as finite-word-length version of the topological
conjugation between the Bernoulli and tent maps. This fact
is somewhat surprising because such periodic sequences
are no longer real chaos.
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