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Abstract—There is a topological conjugation between
the Bernoulli and tent maps. In this paper, it is proved that
there is also a topological conjugation between two types of
periodic sequences generated by nonlinear feedback shift
registers which can be regarded as one-dimensional maps
obtained by quantizing the Bernoulli and tent maps.

1. Introduction

Pseudo random numbers are required in several appli-
cations including Monte Carlo method, spread spectrum
communication, cryptography, and so on. Representatives
of pseudo random numbers are linear and nonlinear shift
register sequences such as M-sequences and de Bruijn se-
quences [1]. On the other hand, as a quite different ap-
proach, random number generation based on chaos has
been increasingly studied by many researchers. Chaos is
random behavior produced by deterministic systems. The
simplest chaotic system is a one-dimensional discrete-time
nonlinear dynamical system.

Shift register sequences are mostly designed by means
of finite field theory and chaotic ones are based on nonlin-
ear dynamical systems treating real numbers. Therefore,
there are seemingly no relationship between shift register
sequences and chaotic ones even if there is a common sense
that both sequences are generated by deterministic systems.
However, the following works show some relations be-
tween shift register sequences and chaotic ones. An inter-
esting insight is firstly pointed out in [2], which reveals that
M-sequences generated from linear feedback shift registers
(LFSRs) are one of finite-word-length approximation to the
Bernoulli map. As in [3], it is easy to show that nonlin-
ear feedback shift registers (NFSRs) are also one of finite-
word-length approximation to the Bernoulli map. Further-
more, finite-word-length approximation of the tent map is
realized by another type of nonlinear feedback shift register
called extended nonlinear feedback shift register (e-NFSR)
in [3]. Generation algorithm of maximal-period sequences
(including m-ary de Bruijn sequences) generated by quan-
tizing a class of chaos maps is proposed in [4].

It is well known that the Bernoulli map and tent map
can be transformed into each other by a function. This re-
lation is called a fopological conjugation [S]. In [6], it is
also revealed that there is a linear transformation between
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(a) Bernoulli map. (b) Tent map.

Figure 1: Bernoulli and tent maps.

two forms of NFSR, whose concept is quite analogous to
a topological conjugation. In this paper, we prove a topo-
logical conjugation between periodic sequences generated
by NFSRs and e-NFSRs, which can be regarded as finite-
word-length version of the relation between the Bernoulli
and tent maps.

2. Bernoulli and Tent map

We firstly introduce the Bernoulli and tent maps, which
are well-known chaotic maps respectively defined by

~ 2 (O<x<d

Xt = Tp0tn) = { 2, -1 (Gsxp<n, O
_ _ 2yn O<y, < %)

Y1 = T1(Yn) = { 2(1 = yy) (% <y. <. @

Figs.1 illustrate the Bernoulli and tent maps.

It is well known that the Bernoulli and tent maps are
topologically conjugated, which means that they can be
transformed into each other by a conjugation function A(x)
satisfying [5]

h(tp(x)) = Tr(h(x)). 3)

A diagram of the concept of the topological conjugation
will be shown in Fig.4 (a). In [5], a conjugation function
h(x) is given by

() = D b2, bix) € {0, 1), (4)
j=1
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(b) An example of 1-D map (k = 4).
Figure 2: NFSR and its 1-D map.

Here b;(x) are obtained by the following recurrence rela-
tion:

bj1(x) =bj(x)®aj.(x) (j=0,1,2,--), &)

where bo(x) = 0, ® denotes modulo-2 addition, and a; is
determined by the binary expansion of x written as

x= Z aj(x27,  a;(x)€{0,1}. ©)

j=1
Note that the Bernoulli map 75(x) can be expressed as

00

(0 = ) a2, )

=1

3. Finite-Word-Length Approximation of Chaotic Se-
quences

We introduce NFSRs and extended NFSRs which can be
considered as generators of quasi-chaotic sequences with
finite precision [3].

3.1. NFSR

Fig.2 (a) shows a nonlinear feedback shift register
(NFSR) with £k memory cells, where the feedback function
g(+) is a mapping of GF (2)f to GF(2). Denote a state of
the register by the column vector @ = (aj,as,---,a;) €
GF(2)F. Let T be the next-state operator, then T(a) de-
notes the next state of an NFSR with current state a.
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(b) An example of 1-D map (k = 4).
Figure 3: Extended NFSR and its 1-D map.

Namely, by clocking the NFSR, a is succeeded by T'(a) =
(az,as, -, ar, g(ay,az, -+ -,a)) € GF(2)k which is repre-
sented by [6]

T(a) = Aa @ g(a)u, ®)

where g(a) indicates the nonlinear feedback function map-
ping GF(2)f to GF(2), A is the k X k matrix defined by

o1 --- 0
0O 0 1--- 0
A= . E 9
0O 0 ---0 1
00 --- 0
and u is the column vector such that
u=(0,0,---,1) € GFQ2) . (10)

Next, let us transform a state of the register at time # into
a decimal integer x, € [0, 2k _ 1] as

xp=a1(n)- 25" v a(n) - 252+ ) - 2°, (1)
where a;(n) € GF(2) denotes a value of ith element of
the register at time n. We can construct one-dimensional
maps by plotting (x,, x,+1). An example of such a 1-D
map is shown in Fig.2 (b), where k = 4. It is easily
found from Fig.1 (a) and Fig.2 (b) that the shapes of such
one-dimensional maps are similar to the Bernoulli map.
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Namely, NFSRs are finite-word-length approximation to
the Bernoulli map.

Maximal-period sequences generated from such NFSRs
are called de Bruijn sequences whose period is 2F. It is
known that the number of possible NFSR sequences is
equal to 22" and the number of de Bruijn sequences is
equal to 22 [11, [7].

3.2. Extended NFSR

Fig.3 (a) shows an extended NFSR (e-NFSR) with k
memory cells, where the feedback function is g’(-). We
also denote a state of the register by the column vector
a = (a},d,, - ,a;) € GF(2)*. Similarly to NFSRs, the
transition manner can be represented as

T'(@)=Ad &g (a)u, (12)
where 7" is the next state operator for extended NFSRs and
A’ is the k X k matrix defined by

10 1--- 0
A=l (13)
10 -0 1

Fig.3 (b) shows an example of a 1-D map obtained by
transforming the register states into integer values with
eq.(11) as well as the NFSR case. From Fig.1 (b) and Fig.3
(b), we can also find that such 1-D maps are similar to the
tent map. Thus, e-NFSRs can be considered as finite-word-
length approximation to the tent map.

4. Equivalence of Periodic Sequences Generated by
NFSRs and e-NFSRs

We show here the fact that there is a one-to-one transfor-
mation Ha = a’ satisfying

HT(a) = T'(Ha) 14)

which is a kind of topological conjugation between NFSRs

and e-NFSRs corresponding to eq.(3) for the chaotic maps
as shown in Fig.4.

Theorem: A one-to-one mapping Ha =
HT(a) = T’(Ha) for all state a exists.

a’ satisfying

Proof: Denote the mapping H by the k X k matrix:

hig hip hik
hot hap -+ hog

H=| . .. . (15)
hey higr o ik

T
x Tp(x) x

a a
h(x) h(x) H H
a a

Y Lo Y T

(a) Bernoulli and tent (b) NFSR and e-NFSR

Figure 4: The concept of topological conjugation between
Bernoulli and tent maps (a) and the one-to-one transforma-
tion matrix H (b).

Using eqs.(8)—(10), (12), (13), and (15), we obtain
HT(a)=H(Aa ® g(a)u)

hija, ®hipa3® - @ hygr1ax © hyxg(a)
ho1ar ®hypas ® -+ @ hog_1ai © hoxg(a)

= . (16)
hiaz ® hipas ® - - ® hyg_1ay © hypg(a)
T'(Ha)=A'Ha® g'(a’)u =
(1@ hy)ar @ (hip®hop)a, @ -+ @ (hyy ® hyp)ay
(hi,1®h3)ar ®(hip®h32)a @ - @ (hi g @ hag)ag
(h1,1 ® hi)ay ® (hip @ hp)ar © -+ @ (Mg ® hyg)ag
g'a) (17)

Thus, the proof will be complete if we can identify a non-
singular transition matrix H and the feedback function g’(-)
from eqs.(14), (16), and (17).

Under the condition that eq.(14) holds for arbitrary a@ and
g(+), we can get the following equations concerning the co-
efficients /4 and the feedback function g’(-).

hit=hy; @Q<j<k (18)
hix=0 (1<j<k-1) (19)
hjg=hi 1 ®hjem A< jI<k-1) (20)

ga)=hyiay ® hyra3® - ® Iy porax ® hypg(a). (21)

First, solving eqs.(18)—(20), we can get the nonsingular
matrix H as

0 --- 0
1 0

H = . (22)
11 1

which is a lower triangular matrix and has its inverse matrix
H7!is given by

1 0 0 0
11 0 0

H—l — 0 1 0 0 (23)
00 11
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Figure 5: The directed graphs, where k = 3. Each node is
transformed into each other by the matrices H and H~'.

Next, from egs.(21) and (22), we have

g@)=a®a;®-- @ a,®gla). (24)
Thus the proof is completed.

In [3], the number of maximal-period sequences gen-
erated from e-NFSRs is investigated by numerical experi-
ments in the case for k = 3,4, 5. Here we can show the fol-
lowing corollary concerning the number of maximal-period
sequences generated from e-NFSRs.

Corollary: The number of maximal-period sequences gen-

N k=1 . .o
erated from e-NFSRs is 22 % that is, as same as de Bruijn
sequences.

Proof: The above theorem shows that every state and its
next state of NFSRs can be transformed to those of e-NFSR
by the one-to-one mapping H under the condition that g’(-)
satisfies eq.(24). Hence, it is obvious that the total number
of possible sequences and maximal-period sequences gen-
erated from e-NFSRs are equal to those of NFSR, that is,
227" and 227K, respectively [11,[7].

Remark 1: Since a;, = ag in @’ = Ha, every output of
NFSRs with an initial state is the same as that of e-NFSRs
with the corresponding initial state under the assumption
that eq.(24) is satisfied. This implies that all of de Bruijn
sequences can also be generated by e-NFSRs.

Remark 2: The relation eq.(5) can also be expressed by

bl 1 0 0 0 --- ap

b, 1 1.0 0 - a

b3 — 1 1 1 0 -- as , (25)
1111 - as

by

where x is dropped for simplicity. The transformation ma-
trix of eq.(25) is equivalent to H given by eq.(22) except
the difference of the size of dimension. This implies that H
is a finite dimension version of 4(x) given in eq.(4).

Remark 3: The transition manner of states of NFSRs
is represented by a directed graph with 2% nodes [1],[7],
where every node denotes a state of register and has in-
degree and out-degree 2. Fig.5 (a) shows the directed graph
for k = 3. A path in the graph is determined by g(-) under
the restriction that every node can be gone through once
and only once. By using @’ = Ha, we can easily obtain
the directed graph of e-NFSRs, as shown in Fig.5 (b). We
can also transform any path in one graph into a path in the
other graph by the transition matrices (H, H™') and eq.(24).
It is easy to see the equivalence of NFSRs and e-NFSRs in
Fig.5.

5. Conclusion

In this paper, we have shown the one-to-one mapping
between periodic sequences generated by NFSRs and e-
NFSRs, which is quite analogous to a topological conju-
gation function between the Bernoulli and tent maps. We
find that a lower triangular matrix can transform the states
of NFSRs and e-NFSRs into each other. The relation can be
considered as finite-word-length version of the topological
conjugation between the Bernoulli and tent maps. This fact
is somewhat surprising because such periodic sequences
are no longer real chaos.
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