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Abstract—We show that deterministic stochastic
resonance (DSR) can be enhanced by coupling of
chaotic oscillators and there is an optimal coupling
strength which maximizes the resonance response. We
study periodic-forced chaotic oscillators coupled to
each other. The phases of the oscillators and pe-
riodic forcing synchronize with each other when the
force strength is large. When we set the force strength
below a critical value, the phase synchronization occa-
sionally fails, and we can observe intermittent slips in
the phase differences. The strength of the coupling be-
tween the oscillators is another bifurcation parameter
that has a critical point between asynchronous and
synchronous phase slip state. When the coupling is
larger than the critical value, the DSR effect is en-
hanced by synchronized slips. Since the increasing
of coupling strength also controls the average rate of
slips, that is the internal fluctuation, we can see an
optimal coupling strength which maximizes the DSR
response. To our knowledge, this is the first report of
enhanced DSR by coupling in a deterministic system.

1. Introduction

Noise-induced effects in nonlinear systems have re-
cently received considerable attention. In particular,
stochastic resonance (SR) [1, 2] has been studied in
various systems. The resonance response of a noisy
nonlinear system to a subthreshold signal can be opti-
mized by noise intensity. Several studies have reported
SR-like behavior also in chaotic systems, both numer-
ically and experimentally [3, 4, 5, 6, 7]. These res-
onance behaviors are called deterministic SR (DSR),
and it is often interpreted that chaos intrinsically gen-
erates the noise in the SR scenario. In some DSR
studies, the researchers insisted that crises have an
important relationship with SR. For example, DSR
has been reported in a deterministic chaotic map that
shows a two attractors merging crisis at a critical point
[3, 5, 6] and DSR is observed with synchronization of
the attractor switching and an injected periodic signal.
SR can be found in bistable systems not only of fixed
points but of any kind of attractors, even chaos.

We have reported DSR in phase slips that occur

when phase synchronization fails in a sinusoidally
forced Rössler oscillator [8, 9]. When the forcing fre-
quency is close to the natural frequency of a Rössler
oscillator, the two phases are synchronized in the sense
that the difference between these phases stays within
a given region [10, 11, 12]. However, when the dif-
ference between their frequencies increases the phase
synchronization breaks down and intermittent slips in
the phase difference occur. These intermittent phase
slips, where the phase difference quickly changes by
2π, are considered to be jumps to another chaotic at-
tractor in the phase space. The transition between
phase synchronization and phase slips is caused by an
unstable-unstable pair bifurcation crisis [13]. The DSR
mechanism can be explained in terms of the synchro-
nization between the chaotic attractor switching and
the modulation of a bifurcation parameter by an in-
jected periodic signal.

Here we demonstrate enhanced DSR resulting from
coupling between forced Rössler oscillators. Similar to
previous studies on coupled resonators [14, 15, 16, 17],
coupling synchronizes resonator behavior and the res-
onance response is enhanced as a result. This paper
is organized as follows. In the next section, we intro-
duce the coupled forced Rössler oscillators. In Sect. 3
we show the enhancement of DSR when coupling is
introduced. Section 4 contains concluding remarks.

2. Model system

The DSR using phase slips has been studied in
Ref. [8, 9] in detail. Here we focus on the following cou-
pled resonators to study the enhanced DSR achieved
by coupling.

ẋi = si(−νiyi − zi),

ẏi = si(νixi + ayi) + K[1 + ε sin(ωt)] sin(Ωt)

+
N

∑

j=1

C

N
(yj − yi), (1)

żi = si(b + zi(xi − c)).

Here si = 1 + α(r2

i − r2), where ri =
√

x2

i + y2

i , and r
and α are constants whose meaning is explained later.
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We set the system parameters a = 0.2, b = 0.2, and
c = 4.8. The periodic forcing term K sin(Ωt) is fixed as
K = 0.07 and Ω = 1.077 throughout this paper. The
signal term ε sin(ωt) is also fixed as ε = 0.05 and ω =
6.0 × 10−4. We define the frequency average νm and
the difference ∆ν among the natural frequencies νi,
i = 1, . . . , N of each oscillator as νm = 1

N

∑N

i=1
νi and

∆ν = 1

N

∑N

i=1
|νi − νm|. In this paper, the frequency

average νm and the coupling strength C are used as
control parameters.

Here we focus on the phases of the chaotic oscilla-
tors. The projection of the Rössler attractor on the
x-y plane forms a ring around the origin. To de-
scribe the phase θi of the chaotic oscillator, we de-
fine θi = arctan yi

xi

. We then define the phase differ-
ence between the Rössler oscillator and the forcing as
φi = θi − Ωt.

Although it is not so significant in this paper, we
mention the meaning of factor si [8, 9]. The fac-
tor si enlarges the variation of the angular velocity,
driven by the variation of the amplitude. Therefore,
as α increases, the variation of the angular velocity
increases. Phase slips occur more frequently as α in-
creases. In the following, we set α = 0.002. r is the av-
erage r value for an ordinary Rössler oscillator (N = 1,
α = K = C = 0, ν = 1).

For the parameter regime studied in this paper, the
oscillator phase θi intermittently breaks synchroniza-
tion with the phase Ωt of the periodic forcing and the
phase difference occasionally jumps 2π. We observe
DSR in the behavior of this phase slip. We consider
each forced Rössler oscillator as a unit resonator. In
this section, we choose N = 2 for explanation as the
simplest coupled resonator system. As in the single
resonator case described in Ref. [8, 9], the difference
between the forcing frequency Ω and the average fre-
quency νm of the Rössler oscillator governs the aver-
age rate of phase slips. We consider the average rate
of phase slips to be the strength of the internal fluctu-
ations, or the stochastic “noise” in the DSR scenario.
In this paper, we fix Ω, and use νm as the parameter
characterizing the strength of this “noise”.

To study phase slip synchronization, we focus on
the resonator phase difference ∆φ between φ1 and φ2,
that is, ∆φ = φ1 −φ2 = θ1 − θ2. For now, we consider
the case without the signal (ε = 0) unless otherwise
stated. If the coupling strength C = 0, the phase slips
of each forced oscillator occur intermittently and inde-
pendently of each other. In this situation, φi occasion-
ally jumps 2π independently, while ∆φ increases and
decreases by 2π independently. Intermittent synchro-
nization of phase slips also occurs for non-zero cou-
pling strength C when the coupling strength C is too
small, as in Fig. 1(a) and (c). When the coupling
strength C exceeds a critical value, the phase slips of
each forced oscillator occur intermittently but the slips
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Figure 1: Phase slips in two coupled resonators with-
out signal modulation. The mean frequency parameter
is νm = 1.004 and the difference is ∆ν = 0.00005. Fig-
ures (a) and (c) shows the phase difference and the res-
onator phase difference respectively when C = 0.002.
Figures (b) and (d) also shows the phase difference
and the resonator phase difference respectively when
C = 0.006.

of both resonators are synchronized with each other.
Although phase slips occur with respect to the forcing,
the resonator phase difference ∆φ is always within a
certain range, as in Fig. 1(b) and (d) [18].

3. Coupling enhancement of DSR

This section provides numerical results on DSR. We
consider N = 2, unless otherwise stated. The inter-
slip interval distributions (ISIDs) ρi (i = 1, 2) for each
resonator are shown in Fig.2. The frequency differ-
ence ∆ν results in different forms of ISIDs. When
the forcing is modulated by an external periodic sig-
nal with frequency ω, the distribution appears mod-
ulated with peaks at integer multiples τn (= 2πn/ω,
n = 1, 2, . . .) of the modulating signal period. SR is
observed as change in ρi [19]. To quantify the strength
of the resonance response, we use the difference in the
ISID probability at τ1, with and without a signal, i.e.
∆ρi = ρi,ε>0(τ1) − ρi,ε=0(τ1).

In the case of coupled resonators, the behavior of
the ISIDs, the exponential decay without a signal and
the exponential decay of the multipeak envelope with
a signal, are similar to the single resonator result.
The difference between the distributions become closer
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Figure 2: Probability distribution ρi of the inter-
slip time intervals τ . The frequency parameter is
ν = 1.0038 and the difference is ∆ν = 0.00005. The
1st resonator is shown by lines. The 2nd resonator
shown by dotted lines. Figure (a) shows the distribu-
tion without a signal (ε = 0) and Fig. (b) shows the
distribution with signal (ε = 0.05 > 0).

when the coupling strength increases, both with and
without a signal (ε = 0 and > 0). When the slips are
perfectly synchronized with each other with sufficient
coupling strength, the ISIDs for each resonator overlap
and are coincident.

Figure 3 (a) shows the resonance strength ∆ρ ver-
sus νm when ∆ν = 0. ∆ρ has a maximum value at a
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Figure 3: Resonance strength ∆ρ as a function of pa-
rameter νm. Here νm represents the strength of the
internal fluctuation. The 1st resonator is shown by
lines. The 2nd resonator shown by dotted lines. Fig-
ure (a) shows ∆ρ when ∆ν = 0 and Fig. (b) shows ∆ρ
when ∆ν = 0.0001(> 0).

particular value of νm, which represents the strength
of the internal fluctuation. This is similar to the single
resonator result [8, 9]. The maximum ∆ρ value with
C > 0 is larger than that with C = 0. From this fig-
ure it can be seen that the coupling strength C can
enhance the resonance response. If the frequency dif-
ference of the oscillator is zero (∆ν = 0), even small
coupling can synchronize the slips that occur between
the phases of each forced oscillator and the periodic
forcing. This is related to the enhancement of the

resonance response. Similar to this result, Fig. 3 (b)
shows that the coupling C can also enhance the reso-
nance response when ∆ν > 0. When the difference ∆ν
is larger than zero, the size of the coupling C that is
required to synchronize the phase slips is larger than
when ∆ν = 0. For both cases, when the coupling is
larger than a certain value, the resonance strength ∆ρ1

and ∆ρ2 curves of the two oscillators become closer as
seen in Fig. 3 (a) and (b), and finally overlap. This
is because the phase slips of both resonators are syn-
chronized by the coupling between the oscillators.

Figure 4 shows the resonance strength ∆ρ1 as a
function of the coupling strength C at a fixed νm. It
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Figure 4: Resonance strength∆ρ1 as a function of cou-
pling strength C at a fixed νm. Figure (a) shows ∆ρ
when ∆ν = 0 and Fig. (b) shows ∆ρ when ∆ν =
0.0001(> 0).

can be seen that there is an optimal coupling strength
Copt which produces the maximal resonance response
in the ∆ρ1 value. This optimality is qualitatively dis-
cussed later in Sect. 4. Figure 5 shows that similar
coupling-enhanced response occurs for a larger num-
ber of oscillators, N = 16, when ∆ν = 0. There is an
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Figure 5: Resonance strength ∆ρ. Figure (a) shows
∆ρ as a function of parameter νm and Fig. (b) shows
∆ρ as a function of coupling strength C at a fixed νm.

optimal νm in Fig.5 (a) and there is an optimal cou-
pling strength Copt in Fig.5 (b), which produces the
maximal resonance response.
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4. Conclusion

We have shown numerically that coupling can en-
hance the deterministic stochastic resonance (DSR)
response. In this sense, our result on enhanced res-
onance is consistent with the results of other studies
of coupling-enhanced SR [14, 15, 16, 17]. However, to
our knowledge, this is the first report of enhanced DSR
by coupling in a deterministic system.

This enhancement can be described qualitatively as
follows. When an external signal modulates the forc-
ing in this system, the DSR effect is seen as statistical
synchronization between the intermittent phase slips
for each resonator and the external signal, manifest
as resonance peaks in the interslip interval distribu-
tion (ISID). When the coupling is larger than a critical
value, phase slips between resonators are synchronized
with each other, causing the ISIDs of the intermittent
phase slips in the resonators to be similar even when
the oscillator frequencies are different, and the DSR
effect is enhanced.

Increasing of coupling strength increases the aver-
age rate of slips, that is the internal fluctuation. In
the case of standard SR, the increasing of coupling
strength only suppresses effective noise intensity. In
this sense, there is a difference in the effect of the cou-
pling strength on fluctuations in the standard SR and
DSR in the coupled forced Rössler oscillators. De-
tail behavior about effects of coupling will be reported
elsewhere.
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