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Abstract—In this paper, each element of the admittance
matrix of RLCG interconnects is reduced by partial frac-
tion consists of the exact poles of the admittance matrix
and the corresponding residues. The residues can be calcu-
lated by the least squares method so that the partial fraction
matches each element of the exact admittance matrix in the
frequency-domain. From the partial fraction, macromodels
which can be easily simulated with SPICE are synthesized.
Based on experimental studies, an approach for calculating
the residues that guarantee the passivity of the macromod-
els are presented.

1. Introduction

The analysis and design of high speed LSI chips are
becoming more and more important, because the sub-
circuits coupled with interconnects embedded in the sub-
strate sometimes cause the fault switching operations due
to the signal delays, crosstalks, reflections and so on [1]-
[5]. The Elmore resistance-capacitance (RC) delay met-
ric is popular due to its simple closed-form expression,
computation speed and fidelity with respect to the simu-
lation [4]. The closed-form combining with the delay and
crosstalk is firstly presented in the reference [5]. The mod-
ified algorithms are proposed later for the improvement of
the accuracy and the practical applications in the simula-
tions [6]-[9].

AWE (asymptotic waveform evaluation method) [10] is
widely used as a reduction technique of the large scale
of linear networks, the algorithm is based on a moment-
matching technique and Padé approximation. However,
the method sometimes become erroneous, if there exist
the poles far from the origin. To overcome the problem,
CFH (complex frequency hopping) [11] and multi-point
Pad́e approximation [12] methods are proposed. In these
reduction algorithms, the reduced circuits sometimes be-
come unstable in the time domain even if all the poles are
located in the left hand side of the complex plane. The
ill-condition can be overcome by PVL (Padé via Lanczos
process) [13], and PRIMA (passive reduced-order intercon-
nect macromodeling algorithm) [2,14]. In order to apply
these algorithms to the interconnects, we need two steps
such that each interconnect is firstly modeled by a finite or-

der system, and Arnoldi-based congruence transformation
is applied to the system to form its reduced order model.

In this paper, we consider LSIs such as ASIC or SoC
(System on a Chip) are coupled with interconnects embed-
ded in the substrate. In this case, the diffusion resistance
components of the interconnects are generally assumed to
be very large compared to those of PCBs [3] and the lengths
are very short. From the telegrapher’s equation of the in-
terconnects, the admittance matrix is derived from the rela-
tions at the near and far ends [1]. Next, each of the elements
of the admittance matrix is approximated by partial fraction
using dominant poles around the origin. The poles can be
calculated by a computational method proposed in our pre-
vious study [18]. The residues are subsequently evaluated
by the least squares method so that the frequency response
curves of the partial fractions match with those of the ex-
act admittance matrix. Here the frequency response curves
of the partial fractions are compared with the exact ones.
Then, it will be investigated that how the passivity of par-
tial fractions obtained from pole-residue pairs breaks and
why inaccurate residues are obtained. Based on the consid-
erations, we provide a procedure to enforce the passivity
of the macromodels.Furthermore, SPICE simulations us-
ing the macromodel synthesized from the partial fractions
and built-in model of SPICE are carried out and compared.

2. Admittance Matrix of Interconnects and Partial
Fraction Approximation

The admittance matrix for a uniformN coupled RLCG
interconnect is given by [18]:

Y11(s) = Y22(s) = Pc(s)diag[cothγi(s)d]Pv(s)−1

Y12(s) = Y21(s) = −Pc(s)diag

[
1

sinhγi(s)d

]
Pv(s)

−1

 (1)

where Pv(s) and Pc(s) are transfer matrices. The poles
of the admittance matrix (1) must satisfy the relation
sinhγi(s)d = 0 and they can be calculated by applying
the Leverrier-Faddeeva algorithm [18]. We choose some
dominant poles located around the origin of the complex
plane, because the poles have large impact on the transient
responses. Thus, the admittance matrix given by (1) are
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approximated by the partial fractions that are composed of
the dominant poles and the corresponding residues, in the
following form:

Ŷ11(s) = Ŷ22(s) =

N∑

i=1

k01,i

s− p0,i
+

N∑

i=1

M∑

n=1

b11,i,ns+ b10,i,n

s2 + a1,i,ns+ a0,i,n
(2)

Ŷ12(s) = Ŷ21(s) =

N∑

i=1

k02,i

s− p0,i
+

N∑

i=1

M∑

n=1

b21,i,ns+ b20,i,n

s2 + a1,i,ns+ a0,i,n
(3)

where N is the number of conductors andM shows the
number of complex conjugate pairs. Alsop0,i denotes a
real pole and{a1,i,n, a0,i,n} are derived from complex conju-
gate poles for (1), respectively. Further the residues of (2)
and (3) have the following relations [17, 18]:

k02,i = −k01,i

b21,i,n = (−1)n+1b11,i,n, b20,i,n = (−1)n+1b10,i,n

}
(4)

that is, we have to evaluate only the residues for (2) and
the values of (3) can be calculated using the relation (4).
Macromodels can be derived from the relations (2)–(4), but
omit in this paper due to space limitation (refer to [18] for
detail).

3. Approach for Calculating Residues

The residues satisfying (2) are calculated by the least
squares method so that the frequency response curve of (2)
fits to the exact one. In order to guarantee the passivity
of the macromodels, the following trial-and-error approach
for calculating the residues is provided.

Step 1) Determine the highest matched frequencyfmax.

Step 2) Choose all poles with the imaginary part less than
or equal to 2π fmax and further several extra poles be-
yond the frequency. Let the number of the former and
the latter beM andα, respectively. Thus the num-
ber of poles required in the least squares method is
replaced withMext = M + α. The appropriate initial
value ofα is about 5∼ 10.

Step 3) Perform the least squares fitting and subsequently
truncate the extraα pole-residue pairs beyond 2π fmax.

Step 4) If all of the residues and the resulting macromodel
parameters are positive, finish the computation; other-
wise increase the number of extra polesα and return
to Step 3.

It should be noted that the proposed approach enforces the
passivity of the interconnect macromodels. All the values
of the passive elements included in the macromodels are
constrained to be positive. Hence, the macromodels are
guaranteed to be passive.

We mention here the reason why the above residues cal-
culation procedure is required, through the following nu-
merical results.

Case 1 Let the highest frequency and the number of poles
be fmax = 6 [GHz] andM = 10, respectively. In this case
the frequency corresponding to the polep10 (the suffix i = 1
is omitted) with largest imaginary part is about 5 [GHz].
The frequency response curve obtained by substituting the
calculated poles and residues to the partial fraction (2) or
(3) and the exact curve obtained from (1) are shown in Fig.
1. Here, the above-mentioned procedure of residues cal-
culation is not used, and|Ŷ12( jω)| is calculated using the
relation (4). The approximated curves by the partial frac-
tions have relatively good agreement with the exact one up
to 11-th peak around 5 [GHz], because we took a real pole
and 10 of complex conjugate poles (i.e.,M = 10). From
the figure, it seems that the least squares fitting is success-
fully performed. However the calculated residues contain
negative values as listed in the left-half of table 1, which
yields negative circuit parameters. Thus, it is clear that the
passivity is not satisfied in this case.

Case 2 For the case that the resistance component of in-
terconnect becomes large, the least squares fitting fails to
approximate the frequency-domain response accurately, as
shown in Fig. 2. In this example,|Ŷ12( jω)| is also calcu-
lated using the relation (4). From these two examples, we
can conclude that the pole selection in this manner is not
suitable for our purpose.

Case 3 Next we tried to choose some extra poles beyond
the highest frequencyfmax. After choosing 6 of extra poles
beyond fmax = 6 [GHz] (i.e., M = 18), the residues are
calculated by performing the least squares fitting, which
are listed in the right-half of table 1 and the frequency re-
sponse curves are shown in Fig. 3. As expected,|Ŷ11( jω)|
matches the exact one within the whole frequency range

Table 1: Residues obtained by the least squares method for Cases
1 and 3.

Case 1 Case 3

n b1,n b0,n b1,n b0,n

1 3.815e−02 3.979e−03 4.000e−02 5.002e−03

2 3.815e−02 1.939e−03 4.000e−02 5.008e−03

3 3.816e−02 −1.568e−03 4.000e−02 5.017e−03

4 3.818e−02 −6.727e−03 4.000e−02 5.016e−03

5 3.820e−02 −1.385e−02 4.000e−02 5.004e−03

6 3.822e−02 −2.349e−02 4.000e−02 4.979e−03

7 3.825e−02 −3.664e−02 4.000e−02 4.940e−03

8 3.828e−02 −5.537e−02 4.000e−02 4.960e−03

9 3.829e−02 −8.508e−02 4.000e−02 5.049e−03

10 3.818e−02 −1.483e−01 4.000e−02 5.127e−03

11 4.000e−02 4.623e−03

12 3.990e−02 1.383e−02

13 4.149e−02 3.551e+00

14 1.704e+00 −1.005e+02

15 −1.902e+01 6.750e+02

16 6.859e+01 −1.764e+03

17 −9.761e+01 1.972e+03

18 4.815e+01 −7.910e+02
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Figure 1: Frequency response curves for single conductor interconnect. (r = 0.5[Ω/mm], d = 5.0[mm], fmax = 6.0[GHz], M = 10)
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Figure 2: Frequency response curves for single conductor interconnect. (r = 25.0[Ω/mm], d = 5.0[mm], fmax = 6.0[GHz], M = 10)

(0 ≤ f ≤ fmax) of interest, shown in Fig. 3(a). Unfortu-
nately, as shown in Fig. 3(b),|Ŷ12( jω)| obtained from (3)
and (4) is entirely different from the exact one. Further-
more, the values of|Ŷ11( jω)| at certain frequency range be-
yond the highest matched frequency (fmax = 6 [GHz]) be-
come very large and differ completely from the exact one,
as shown in Fig. 3(c). Note that the only difference of Figs.
3 (a) and (c) is the scales of axes.

From the right-half of table 1, the residues forn > 12,
which correspond to the extra poles, contain negative or
large values and consequently do not guarantee the passiv-
ity. Thus, it is concluded that disagreement of|Ŷ12( jω)| and
huge values of|Ŷ11( jω)| at frequency range beyondfmaxare
due to the extra pole-residue pairs.

Case 4 In this example, to remove the pole-residue pairs
beyond the highest frequency, which are the factors dis-
turbing our purpose, is considered. In the same conditions
as Case 3, 6 of extra pole-residue pairs forn > 12 are trun-
cated and the frequency response curves are computed. The
results are illustrated in Fig. 4. The effect of truncation be-
gins to appear at the last half of the frequency range; that
is, the accuracy of partial fractions (2) and (3) at higher
frequency range is degraded. However, at lower frequency
range both curves remain matched. Further the calculated
response|Ŷ12( jω)| using the relation (4) is also matched to
the exact one at lower frequency range, unlike the Case 3.
Note that the partial fractions (2) and (3) (or the resulting
asymptotic equivalent circuits) become more precise as the
value of fmax increases, because matched frequency range
becomes wide accordingly. Further it has been confirmed
that positive residues and/or circuit elements of the macro-
models can be obtained by increasing the number of extra
poles, even if negative residues and/or circuit elements ap-
peared aroundfmax.

It is not easy to show whether the residues guaranteeing the
passivity can be always obtained by this approach, however
they could be obtained in our simulations conducted so far.

4. Transient Simulation Using Macromodels

The transient responses for a simple linear circuit with a
single-conductor interconnect are calculated. The SPICE
simulations using the macromodel are carried out with
varying the highest matched frequencyfmax (accordingly
M is changed), and compared with the simulated results
of built-in SPICE model. Figure 5 shows the transient
response waveforms forr = 0.5 [Ω/mm] andd = 5.0
[mm]. All the waveforms have relatively good agreement,
although ringing occurs at rising and falling edges of wave-
forms. The ringing can be suppressed with increasingM,
but remarkable changes are not observed even forM = 100
(in this casefmax = 50 [GHz]).

5. Conclusions

In this paper, we have provided an approach for calcu-
lating the residues that guarantee the passivity. Using the
exact poles and the calculated residues, each element of
the admittance matrix of interconnects is approximated by
the partial fraction. Though the frequency response curves
calculated using the partial fractions become inaccurate
around the highest matched frequencyfmax, the partial frac-
tions and the resulting macromodels are always passive. In
this paper, some examples for single conductor intercon-
nect have been presented, but our method can be effectively
applied to multi-conductors interconnects.
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