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Abstract—In this paper, each element of the admittancéer system, and Arnoldi-based congruence transformation
matrix of RLCG interconnects is reduced by partial fracis applied to the system to form its reduced order model.
tion consists of the exact poles of the admittance matrix In this paper, we consider LSls such as ASIC or SoC
and the corresponding residues. The residues can be cal(8ystem on a Chip) are coupled with interconnects embed-
lated by the least squares method so that the partial fractided in the substrate. In this case, th&udiion resistance
matches each element of the exact admittance matrix in tetemponents of the interconnects are generally assumed to
frequency-domain. From the partial fraction, macromodelse very large compared to those of PCBs [3] and the lengths
which can be easily simulated with SPICE are synthesizedre very short. From the telegrapher’s equation of the in-
Based on experimental studies, an approach for calculatitgrconnects, the admittance matrix is derived from the rela-
the residues that guarantee the passivity of the macromaibns at the near and far ends [1]. Next, each of the elements

els are presented. of the admittance matrix is approximated by partial fraction
using dominant poles around the origin. The poles can be
1. Introduction calculated by a computational method proposed in our pre-

vious study [18]. The residues are subsequently evaluated
The analysis and design of high speed LSI chips angy the least squares method so that the frequency response
becoming more and more important, because the suBgrves of the partial fractions match with those of the ex-
circuits coupled with interconnects embedded in the sulyct admittance matrix. Here the frequency response curves
strate sometimes cause the fault switching operations dggthe partial fractions are compared with the exact ones.
to the signal delays, crosstalks, reflections and so on [Ifhen, it will be investigated that how the passivity of par-
[5]. The Elmore resistance-capacitance (RC) delay mej| fractions obtained from pole-residue pairs breaks and
ric is popular due to its simple closed-form expressionyhy inaccurate residues are obtained. Based on the consid-
computation speed and fidelity with respect to the simugrations, we provide a procedure to enforce the passivity
lation [4]. The closed-form combining with the delay andsf the macromodels.Furthermore, SPICE simulations us-
crosstalk is firstly presented in the reference [5]. The mogng the macromodel synthesized from the partial fractions

ified algorithms are proposed later for the improvement ofnd built-in model of SPICE are carried out and compared.
the accuracy and the practical applications in the simula-

tions [6]-[9].

AWE (asymptotic waveform evaluation method) [10] is
widely used as a reduction technique of the large scale
of linear networks, the algorithm is based on a moment- The admittance matrix for a unifortN coupled RLCG
matching technique and Padipproximation. However, interconnect is given by [18]:
the method sometimes become erroneous, if there exist
the poles far from the origin. To overcome the problem,y ;(s) = Y,x(s) = Ps(s)diag[cothy;(s)d]Py(s)~2 }

2. Admittance Matrix of Interconnects and Partial
Fraction Approximation

CFH (complex frequency hopping) [11] and multi-point ) 1 .
Pack approximation [12] methods are proposed. In thesd 12(8) = Y21(8) = ~P¢(s)dia W}PV(S)
reduction algorithms, the reduced circuits sometimes be-

come unstable in the time domain even if all the poles anghere P,(s) and P;(s) are transfer matrices. The poles
located in the left hand side of the complex plane. Thef the admittance matrix (1) must satisfy the relation
ill-condition can be overcome by PVL (Padia Lanczos sinhyj(s)d = 0 and they can be calculated by applying
process) [13], and PRIMA (passive reduced-order intercotihe Leverrier-Faddeeva algorithm [18]. We choose some
nect macromodeling algorithm) [2,14]. In order to applydominant poles located around the origin of the complex
these algorithms to the interconnects, we need two stepkne, because the poles have large impact on the transient
such that each interconnect is firstly modeled by a finite oresponses. Thus, the admittance matrix given by (1) are
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approximated by the partial fractions that are composed @fase 1 Let the highest frequency and the number of poles
the dominant poles and the corresponding residues, in the fnax = 6 [GHz] andM = 10, respectively. In this case

following form: the frequency corresponding to the pplg (the sufixi = 1
Y11(9) = You(9) = is omitted) with largest imaginary part is about 5 [GHz].
N . NOM b The frequency response curve obtained by substituting the
Z L + Z Z 11inS+ Digin (2) calculated poles and residues to the partial fraction (2) or
£ S—poi L L S +ainS+ain (3) and the exact curve obtained from (1) are shown in Fig.
Y1a(S) = You(s) = 1. Here, the above-mentioned procedure of residues cal-

N N M culation is not used, anff12(jw)| is calculated using the

Z Kozi n Z Z B21inS + Proin (3) relation (4). The approximated curves by the partial frac-
—~ S—poi S F+ansStan tions have relatively good agreement with the exact one up

to 11-th peak around 5 [GHZz], because we took a real pole

and 10 of complex conjugate poles (i.81, = 10). From

the figure, it seems that the least squares fitting is success-
lly performed. However the calculated residues contain
‘egative values as listed in the left-half of table 1, which

yields negative circuit parameters. Thus, it is clear that the

Kozi = —Kowi passivity is not satisfied in this case.
bo1in = (=1)"011in. baoin = (1) bigin } ( Case 2 For the case that the resistance component of in-
'gprconnect becomes large, the least squares fitting fails to

where N is the number of conductors arldd shows the
number of complex conjugate pairs. Algg; denotes a
real pole anday; n, apin} are derived from complex conju-
gate poles for (1), respectively. Further the residues of (
and (3) have the following relations [17, 18]:

that is, we have to evaluate only the r_e5|dues for _(2) an proximate the frequency-domain response accurately, as
the values of (3) can be calculated using the relation (4 hown in Fig. 2. In this exampl¢\?12(ja))| is also calcu-

Macromodels can be derived from the relations (2)-(4), bLl'(Iﬂted using the relation (4). From these two examples, we
omit in this paper due to space limitation (refer to [18] for Tcan conclude that the pole selection in this manner is not
detail). suitable for our purpose.

3. Approach for Calculating Residues Case 3 Next we tried to choose some extra poles beyond
the highest frequenciax After choosing 6 of extra poles
The residues satisfying (2) are calculated by the Ieagbyond fmax = 6 [GHZ] (i.e., M = 18), the residues are
squares method so that the frequency response curve of gl)culated by performing the least squares fitting, which
fits to the exact one. In order to guarantee the passivigte listed in the right-half of table 1 and the frequency re-
of the macromodels, the following trial-and-error approaciponse curves are shown in Fig. 3. As expedtéd(jw)]
for calculating the residues is provided. matches the exact one within the whole frequency range

Step 1) Determine the highest matched frequerfigy.

Step 2) Choose all poles with the imaginary part less thadable 1: Residues obtained by the least squares method for Cases
or equal to 2 fax and further several extra poles be- land3.
yond the frequency. Let the number of the former and Casel Case 3

the latter beM and «, respectively. Thus the num- | N bun bon bun bon
ber of poles required in the least squares method is 1 | 3.815¢-02 | 3.979e-03 || 4.000e-02 | 5.002e-03
replaced withMey; = M + @. The appropriate initial 2 | 381502 | 1.939¢-03 || 4.000e-02 | 5.008e-03
value ofa is about 5~ 10. 3 | 3.816e-02 | —-1.568e-03 4.000e-02 5.017e-03
Step 3) Perform the least squares fitting and subsequently * | 2818602 | ~6.727€03 ) 4.000e:02 | = 5.016e:03
ptrtzncate the extra pole?residue paigr]s beyonokﬂnjx. | 5| 3820002 | -L385002 | 400002 | 5004003
6 | 3.822e02 | -2.349¢-02 || 4.000e-02 | 4.979e-03
Step 4) If all of the residues and the resulting macromodel 7 | 3.825e02 | —-3.664e-02 4.000e-02 4.940e-03
parameters are positive, finish the computation; othert g | 3828602 | -5537¢02 || 4.000e02 |  4.960e-03
wise increase the number of extra pokeand return 9 | 3.829¢.02 | —8.508e-02 4.000e02 | 5.049e-03
to Step 3. 10 | 3.818¢02 | -1.483¢01 | 4.000e-02 | 5.1276-03
It should be noted that the proposed approach enforces thett 4.000e-02 | 4.623e-03
passivity of the interconnect macromodels. All the values 2 3.990e-02 | 1.383e-02
of the passive elements included in the macromodels are!® 4.149e02 | 3.551€-00
constrained to be positive. Hence, the macromodels are'4 1.704200 | -1.005e-02
guaranteed to be passive. 15 -1.902e-01 | 6.750e-02
We mention here the reason why the above residues cal-1° 6.859e-01 | —1.764e-03
culation procedure is required, through the following nu-| 1’ —9.761e01 | 1.972e-03
merical results. 18 4.815er01 | —-7.910e-02
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Figure 1: Frequency response curves for single conductor interconnec@.%[Q2/mm], d = 5.0[mm], f,.x= 6.0[GHz], M = 10)
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Figure 2: Frequency response curves for single conductor interconnec250[Q/mm], d = 5.0[mm], fnax= 6.0[GHz], M = 10)

(0 < f < fmay Of interest, shown in Fig. 3(a). Unfortu- Itis not easy to show whether the residues guaranteeing the
nately, as shown in Fig. 3(b)Y12(jw)| obtained from (3) passivity can be always obtained by this approach, however
and (4) is entirely dferent from the exact one. Further-they could be obtained in our simulations conducted so far.

more, the values d¥11(jw)| at certain frequency range be-

yond the highest matched frequendyd = 6 [GHz]) be- 4. Transient Simulation Using Macromodels

come very large and fler completely from the exact one,  The transient responses for a simple linear circuit with a
as shown in Fig. 3(c). Note that the onlyférence of Figs. sjngle-conductor interconnect are calculated. The SPICE
3 (a) and (c) is the scales of axes. simulations using the macromodel are carried out with
From the right-half of table 1, the residues for- 12, varying the highest matched frequenty., (accordingly
which correspond to the extra poles, contain negative qj is changed), and compared with the simulated results
large values and consequently do not guarantee the pasgjy-puilt-in SPICE model. Figure 5 shows the transient
ity. Thus, itis concluded that disagreemenfab(jw)l and  response waveforms far = 0.5 [Q/mm] andd = 5.0
huge values offY1;(jw)| at frequency range beyorfglaxare  [mm]. All the waveforms have relatively good agreement,
due to the extra pole-residue pairs. although ringing occurs at rising and falling edges of wave-
Case 4In this example, to remove the pole-residue pair§orms. The ringing can be suppressed with increadihg
beyond the highest frequency, which are the factors didut remarkable changes are not observed evekifer100
turbing our purpose, is considered. In the same conditior§# this casefmax = 50 [GHz]).
as Case 3, 6 of extra pole-residue pairsrfor 12 are trun- ]
cated and the frequency response curves are computed. PrneConclusions
results are illustrated in Fig. 4. Théect of truncation be-  In this paper, we have provided an approach for calcu-
gins to appear at the last half of the frequency range; thiiting the residues that guarantee the passivity. Using the
is, the accuracy of partial fractions (2) and (3) at highegxact poles and the calculated residues, each element of
frequency range is degraded. However, at lower frequenelye admittance matrix of interconnects is approximated by
range both curves remain matched. Further the calculateite partial fraction. Though the frequency response curves
responseYio(jw)| using the relation (4) is also matched tocalculated using the partial fractions become inaccurate
the exact one at lower frequency range, unlike the Case &ound the highest matched frequerigy,, the partial frac-
Note that the partial fractions (2) and (3) (or the resultingions and the resulting macromodels are always passive. In
asymptotic equivalent circuits) become more precise as tlisis paper, some examples for single conductor intercon-
value of f,ax increases, because matched frequency rangect have been presented, but our method caiféetimely
becomes wide accordingly. Further it has been confirmegbplied to multi-conductors interconnects.
that positive residues arat circuit elements of the macro-

models can be obtained by increasing the number of extra References
poles, even if negative residues gmcircuit elements ap- [1] J. A. Brandao FariaMulticonductor Transmission-Line Structures:
peared aroundi,ax. Modal Analysis Technique3phn Wiley and Sons, Inc., 1993.
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Figure 3: Frequency response curves for the case that extra poles

beyondf,ax are used. r( = 25.0[Q2/mm], d = 5.0[mm], fnax =
6.0[GHz], M = 18)
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