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ABSTRACT 

State-space recursive least-squares (SSRLS) is a new addition to 

the family of RLS adaptive filters. Superior tracking 

performance and state-space formulation are the strengths of 

SSRLS. In this paper, we show that certain forms of SSRLS act 

as approximate discrete differentiators. High-gain SSRLS has a 

disturbance rejection property. This analogy between continuous 

high-gain observers and high-gain SSRLS provides a rationale to 

use SSRLS as discrete high-gain observer.  This development 

enables us to design a sampled data control for a class of 

continuous nonlinear systems. An example of controlling an 

inverted pendulum illustrates the ideas presented in this 

framework. 

1 INTRODUCTION 

The theory and concept of state-space recursive least-squares 

(SSRLS) was introduced in ([11]). As a natural extension of 

SSRLS, we have developed SSRLS with adaptive memory ([11], 

[12]). SSRLS gives the designer a freedom to choose an 

appropriate signal model. Therefore, SSRLS exhibits superior 

tracking characteristics as compared to the standard RLS ([11], 

[12]). Its state-space formulation makes it especially suited to be 

used as a state estimator in control systems. 

High-gain observers have played an important role in 

the design of output feedback control of nonlinear systems. 

Khalil and coworkers pioneered this concept and have presented 

a number of results ([1], [2], [5], [8]). Other major contributors 

to this theory include Isidori, Kokotovic, Saberi and their 

coworkers respectively ([7], [10], [14], [15]) etc. and the 

references therein). Lately Khalil and Dabroom ([3], [4]) 

extended this concept to sampled-data control systems. Their 

approach is to design the observer and controller in continuous 

time and then discretize the observer and/or controller. In this 

paper, we explore the possibility of using SSRLS as a discrete 

high-gain observer. The observer and controller are designed 

solely in discrete domain, which simplifies the design procedure.  

We begin by showing that certain forms of SSRLS act 

as approximate discrete differentiators. Subsequently we prove 

the disturbance rejection property of high-gain SSRLS. This 

analogy between high-gain observers and high-gain SSRLS 

provides a rationale to use SSRLS as discrete high-gain observer. 

As the plant is taken to be continuous nonlinear system, we have 

to discretize it in order to design the controller and observer. For 

this purpose we use a modified triangular hold equivalent that 

suits our development. The controller design is done for a class 

of nonlinear systems that are feedback linearizable. An example 

of controlling an inverted pendulum illustrates the ideas 

presented in this paper. 

2 STATE-SPACE MODEL 

Consider the following unforced discrete time system.  

[ 1] [ ]

[ ] [ ] [ ]

x k Ax k

y k Cx k v k
 (2.1) 

where nx R  are the process states, my R  is the output vector 

and [ ]v k  is the observation noise. We assume that the pair 

( , )A C  is l-step observable [13] and A is invertible.  

3 PREVIEW OF SSRLS 

Suppose that observations [ ]y k  start appearing at time 1.k

According to SSRLS ([11]) state estimate ˆ[ ]x k  is given as 

ˆ[ ] [ ] [ ] [ ], 1x k x k K k k k  (3.1) 

where ˆ[ ] [ 1]x k Ax k  is the predicted state estimate. The 

prediction error, which is also referred to as innovations, is 

defined as 

[ ] [ ] [ ]k y k y k  (3.2)  

with [ ] [ ]y k Cx k  as the predicted output. Observer gain [ ]K k

is determined by the method of least squares and is given by 

[ ] [ ] TK k P k C  (3.3) 

where [ ]P k  is the solution of the Riccati equation for SSRLS. 

We define 0 1  as the forgetting factor [11]. 

3.1 Riccati Equation of SSRLS 

[ ]P k  is recursively updated by the following equation. 

1 2

1
1

[ ] [ 1] [ 1]

[ 1] [ 1]

T T T

T T T

P k AP k A AP k A C

I CAP k A C CAP k A
 (3.4) 

Initial condition is [0]P , which is preferably positive definite as 

would become clear later in this paper. 

3.2 Recursive Update of [ ]Q k

Define 1[ ] [ ]Q k P k , which can be recursively updated by   

1[ ] [ 1]T TQ k A Q k A C C  (3.5) 

4 PREVIEW OF STEADY-STATE SSRLS 

If the following limit exists 

lim [ ]
k

P k P  (4.1) 

then SSRLS settles down asymptotically to an LTI filter, which 

we term as steady-state SSRLS. The observer gain is not a 

function of time and is given by 
TK PC  (4.2) 

Corresponding to (3.4), in this case we have the algebraic Riccati 

equation  
1

1
2 1

T

T T T T T

P APA

APA C I CAPA C CAPA
 (4.3) 
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Under the following additional constraint 

min ( )Eigenvalues A  (4.4) 

(3.5) is transformed into discrete Lyapunov equation [11] 
1T TQ A QA C C  (4.5) 

Observability of ( , )A C  ensures 0Q .

5 SSRLS AS AN APPROXIMATE DISCRETE 

DIFFERENTIATOR

In this section we show that certain forms of SSRLS are able to 

act as approximate discrete differentiator. We are able to draw an 

analogy between these forms of SSRLS and backward 

difference. This is in accordance with the fact that backward 

difference and SSRLS are both causal. Consider the constant 

velocity model [12]. Its transfer function has the property 

1

0

1

lim ( ) 1H z z

T

 (5.1) 

The second entry is the well-known backward difference. 

Similarly transfer function [12] corresponding to the constant 

acceleration model has the property 

1 2

0

2
1

2

1

3 4
lim ( )

2

1

z z
H z

T

z

T

 (5.2) 

The second row is the three-point difference formula [9] that has 

been used in numerical differentiation. The third row can be 

recognized as the second backward difference formula. 

Continuing in a similar fashion, it can be shown that SSRLS can 

be used to estimate differences of arbitrary orders. thn order 

model [12] serves as the most general framework in this context. 

All of these models are neutrally stable. 

6 DISTURBANCE REJECTION PROPERTY OF 

HIGH-GAIN SSRLS 

When the forgetting factor  is small the observer gain is large. 

Under this condition we term the filter as high-gain SSRLS. 

Such a filter has ability to attenuate the effect of unwanted 

disturbances. Consider a perturbed version of our original system 

(2.1) in absence of observation noise as follows 

[ 1] [ ] [ ]

[ ] [ ]

x k A x k w k

y k C x k
 (6.1) 

where nw R  is a deterministic disturbance signal. The 

estimation error can be written as 

ˆ[ ] [ ] [ ]

[ 1] [ 1]

e k x k x k

Fe k w k
 (6.2) 

where ˆ[ ]x k  is the usual steady-state SSRLS estimate and we 

have defined F A KCA .

Theorem 6.1  [12] 

The estimation error [ ]e k  asymptotically satisfies the following 

bound 

0

lim [ ] sup [ ]
1 ( )k k

e k w k
F

 (6.3) 

where  is a positive constant and ( )F  is the spectral radius 

of F.

6.1 Remarks 

Inequality (6.3) can be transformed into 

0

lim [ ] sup [ ]
1k k

e k w k  (6.4) 

for neutrally stable systems [12]. It is clear from (6.4), that 

smaller the , lesser will be the influence of the disturbance on 

estimation error. However, perfect disturbance attenuation is not 

achieved even when 0 . This restriction is due to finite 

sampling time. Although not apparent from this discussion, 

decreasing the sampling time helps alleviate this limitation.   

7 NONLINEAR CONTROL SYSTEMS 

We briefly discuss a well-known control problem [8] that 

addresses a class of single-input single-output nonlinear systems. 

This section sets a ground for the later development.  Our 

emphasis will be on the systems that can be represented in the 

normal form [8] as follows 

,

1
( , ) , ( , ) 0

( , )

o

c c

c

z f z x

x A x B u z x z x
z x

y C x

 (7.1) 

where n is the order of the system, , nx R z R  are the 

states, y is the output, u is the input and  n  is the relative 

degree of the system. ( , )z x  and ( , )z x  are scalar function of 

the states x and z and are assumed to be locally Lipschitz. The 

matrices cA , cB  and cC  are canonical matrices [8]. 

7.1 The Tracking Problem 

We want to design a control law such that the output of the 

system ( )y t  asymptotically tracks a reference signal ( )r t  i.e. 

lim ( ) ( )
t

y t r t  (7.2) 

In order to achieve global stabilization/tracking, the first 

equation of (7.1), with x  as the input, is assumed to be input-to-

state stable. On the other hand, local stabilization only requires 

,0oz f z  to be asymptotically stable. Assuming that the first 

 derivatives of ( )r t  exist and are bounded, define the 

reference vector and error coordinates as 

1

( 1) ( 1)

( ) , ( ) ( ) ( )

r x r

t t x t t

r x r

r r  (7.3) 

Substituting in (7.1), we get 

( )

,

1
( , )

( , )

( )

o

c c

c c

z f z

A B u z x r
z x

y C x C

r

r

 (7.4) 

The linearizing state feedback control 
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( )( , ) ( , )u z x z x v r  (7.5) 

reduces (7.1) to 

,o

c c

z f z

A B v

r
 (7.6) 

Asymptotic tracking is achieved by taking v K  such that 

c cA B K  is Hurwitz.  

7.2 A Special Case 

If the system is full state feedback linearizable i.e. n  then 

the solution of the output feedback control problem is simple. In 

this case (7.1) reduces to  

( )1
( )

( )

( )

n
c c

c c

A B u x r
x

y C x C r

 (7.7) 

7.3 High-Gain Observers 

Using the measurements from the output y,  can be estimated 

by high-gain observers. A formal discussion of the problem can 

be found in [8]. For the special case of previous section, we 

replace the states x (or ) with their estimates x̂ (or ˆ ) in (7.5) 

to get  

( )1
ˆ( )

ˆ( )

ˆ

nu x v r
x

v K

 (7.8) 

Controller (7.8) solely depends on the output of the plant and 

hence is of great practical significance.  

8 SAMPLED-DATA CONTROL  

We now design a controller for the system (7.1). The system is 

full-state feedback linearizable if the relative degree  is equal 

to the order of the system n. Continuous time controller of this 

system is discussed in Section 7.2. We begin the design of 

discrete output feedback controller by the following figure 

( )y t [ ]y k( )u t

[ ]u k

[ ]r k

[ ]kr

[ ]y k[̂ ]k

Figure 1. Sampled-Data Control of a Nonlinear System  

8.1 State-Observation using High-Gain SSRLS 

Rewrite (7.7) as  

( ) ( ) ( )

( ) ( )

c c

c

t A t B s t

y t C t
 (8.1) 

where 

( )1
( ) ( ) ( ( )) ( )

( ( ))

( ) ( ) ( )

n

c

s t u t x t r t
x t

y t C y t r t

 (8.2) 

The system (8.1) can be viewed as a linear system with ( )t  as 

the states, ( )s t  as a deterministic disturbance and ( )y t  as the 

output. We now discretize (8.1) by using the modified triangular 

hold equivalent [12] to get 

[ 1] [ ] [ ] [ ]
1

[ ] [ ]

dk A k Bs k k

y k C k

0

 (8.3) 

Comparing this result with (6.1) 

exp( )

[ ] [ ] [ ]
1

c

c

d

A A T

C C

w k Bs k k
0

 (8.4) 

Since [ ]w k  appears as a disturbance, smaller  will tend to 

produce accurate results according to Section 6.1. The state 

estimates ˆ[ ]x k  can be found from estimates of error coordinates 

by 

ˆˆ[ ] [ ] [ ]x k k kr  (8.5) 

where [ ]kr  is the sampled reference vector. 

8.2 Discrete Linearizing Feedback 

Assume that we apply the following discrete control [ ]u k  after 

ZOH to the system (7.1). 

( )ˆ ˆ[ ] ( [ ]) ( [ ]) [ ] [ ]n
o ou k x k x k v k r k  (8.6) 

where o  and o  are nominal models for  and . ZOH 

gives us 

( ) [ ]u t u k kT t kT T  (8.7) 

where T is the sampling time. (8.6) reduces (7.1) to 

[ ] ( )c cA B v k t  (8.8) 

where 

( )
1 2 3

1

2

( ) ( )
3

1
( ) ( ) ( ) [ ] [ ] ( )

( )

ˆ( ) [ ] ( )

ˆ( ) [ ] ( )

( ) [ ] ( )

n

o

o

n n

t t t v k r k t
x

t x k x t

t x k x t

t r k r t

 (8.9) 

We have incorporated estimation error, discretization error and 

model uncertainty in (8.9) 

8.3 Stabilizing Control 

Integrate (8.8) for time interval ,kT kT T

[ 1] exp( ) [ ]

exp ( ) [ ] ( )

c

kT T

c c

kT

k A T k

A kT T B v k d
 (8.10) 

which may be simplified into  

1[ 1] [ ] [ ] [ ]o ok A k B v k k  (8.11) 

by introducing 1, , [ ]o oA B k  [12]. Now we design a discrete 

control ˆ[ ] [ ]ov k K K  such that o o oA B K  has all its 
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eigenvalues within the unit circle. This transforms second 

equation of (8.10) into  

[ 1] [ ] [ ]o o ok A B K k k  (8.12) 

where [ ]k  incorporates the effect of error in estimation of 

[ ]k . By Theorem 6.1 

0

lim [ ] sup [ ]
1k ko o o

k k
A B K

 (8.13) 

for some positive constant . This bound shows that high-gain 

control has disturbance rejection property.  

8.4 Integral Control 

In many practical problems, ( )t  of (8.8) settles down 

asymptotically to a value that contains a DC component. 

Suppose 

lim ( ) ( )o ac
t

t t  (8.14) 

The integral control has the ability of rejecting o

asymptotically.  

9 EXAMPLE (INVERTED PENDULUM) 

Consider the following pendulum equation  

1 2

2 1 2

1

10sin( ) 1.2

x x

x x x u

y x

 (8.15) 

We want the output ( )y t  to track a reference ( ) 2 sin( )r t t .

The system (8.15) is already in normal form. The nominal 

models used in the linearizing feedback control (Section 8.2) are 

taken as 

1 2( [ ]) 11sin( [ ]) [ ]

( [ ]) 1

o

o

x k x k x k

x k
 (8.16) 

We use SSRLS with forgetting factor 0.75. The results are 

illustrated in Figure 2. The controller of Section 8.3 provides 

good transient behavior at the cost of larger steady state tracking 

error. On the other hand Integral controller exhibits superior 

tracking performance with deterioration in transient behavior. 

Figure 2. Comparison of Tracking Performances  

10 CONCLUSIONS 

The use of SSRLS in nonlinear control systems is a major 

breakthrough in the sense that it formalizes the application of 

adaptive filters as state estimators in sampled-data control 

systems. Previously designers have not been able to accomplish 

this combination as the relevance between adaptive filters and 

state estimators has not been this straightforward. The analogy 

between continuous high-gain observers and high-gain SSRLS is 

expected to produce a significant impact on design and 

applications related to sample-data control systems. 
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