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Abstract—Pancreatic β-cells secrete insulin and
adjust the blood-sugar level. In the present paper,
by using two kinds of Hodgkin-Huxley-type pancre-
atic β-cell models with or without a calcium store, it
is shown that the model which considers a calcium
store can reproduce the physiological experimental re-
sult that the blockage of gap junction reduces the in-
sulin secretion [3]. We clarify the mechanism of the
difference between the two models with and without a
calcium store by slow-fast decomposition analysis and
2-parameter bifurcation analysis.

1. Introduction

In response to glucose, pancreatic β-cells in the islets
of Langerhans secrete insulin. This insulin facilitates
the use and uptake of glucose in target tissues. In this
way, insulin plays a great role in the adjustment of the
blood-sugar level. On the other hand, the membrane
potential of β-cell shows characteristic wave known as
bursting which has two phases, active and silent one.
It is believed that insulin secretion is greatly related
to the bursting of pancreatic β-cell.

In this paper, two kinds of single pancreatic β-
cell models which are based on [1] and [2] are used.
The former considers voltage-dependent Ca2+ and K+

channel, Ca2+-sensitive K+ channel and pump activ-
ity of Ca2+. The latter assumes calcium stores in
the cell and considers voltage-dependent Ca2+ and K+

channel, cation nonselective channel, pump activity of
Ca2+ and Ca2+ current from the calcium store. How-
ever the dynamical role of the calcium store in the
bursting of β-cells has not been verified yet.
β-cells are connected by gap junctions and consti-

tute a cluster. Thus we study the influence of coupling
strength between β-cells on the bursting by using the
two types of β-cell models with and without a calcium
store. We show that the two different models pro-
duce the essentially different bursting in coupled state
while they produce almost similar behavior in uncou-
pled or isolated state. Using slow-fast decomposition
analysis and 2-parameter bifurcation analysis, we clar-
ify the generation mechanism of the different bursting
and thus clarify the effect of a calcium store on the

bursting of a β-cell cluster.

2. Hodgkin-Huxley-Type Models of a Pancre-
atic β-cell

2.1. Model without a Calcium Store

We assume that the cluster structure is a cube and
each cell is connected to nearest six cells and the
boundary (edge and corner) is insulated. The pan-
creatic β-cell cluster model without a calcium store
are described by [1]:

Cm
dVi

dt
= −gKn

4
i (Vi − VK) − gKC(

Ci

Kd + Ci
)(Vi − VK)

−gCm
3
ihi(Vi − VC) − gL(Vi − VL)

−
∑

j

gi,j(Vi − Vj) (1)

dCi

dt
= f [−k1gCm

3
ihi(Vi − VC) − kCCi] (2)

dyi

dt
=

(yi∞ − yi)
τy

, y = n,m, h (3)

where Vi is the membrane potential, Ci is the calcium
concentration, and ni, mi, hi are the gate variables of
the i-th cell. gi,j is the coupling conductance between
i-th cell and j-th cell, and kC is the flow speed con-
stant of Ca2+ which corresponds to the glucose level
in blood.

Because the calcium concentration Ci changes
slowly in comparison with other variables, we call
equation (2) the slow subsystem and equations (1) and
(3) the fast subsystem. The whole equations (1)-(3)
are called the full system especially.

2.2. Model with a Calcium Store

In the above model, the intracellular calcium con-
centration oscillates slowly. However, it has been
shown experimentally that the oscillation is fast. Thus
the next model assumes the calcium stores in the cell
and that the calcium concentration in the calcium
stores changes slowly. The equations of pancreatic β-
cell cluster model which considers calcium stores are
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as follows [2]:

Cm
dVi

dt
= −gKni(Vi − VK) − gCd∞f∞(Vi − VC)

−gNS
500

500 + Clum,i
(Vi − VNS) − gL(Vi − VL)

−
∑

j

gi,j(Vi − Vj) (4)

dCi

dt
= −ψgCd∞f∞(Vi − VC) − kCCi

+JCRC − kpumpCi (5)
dClum,i

dt
= −JCRC + kpumpCi (6)

dni

dt
=

(ni∞ − ni)
τn

(7)

where Clum,i is the calcium concentration in calcium
stores of i-th cell, JCRC is Ca2+ current from the cal-
cium stores, and kpump is the Ca2+ pump activity in
calcium stores. The other parameters’ meanings are
the same as the former model.

Because the calcium concentration Clum,i in calcium
stores changes slowly in comparison with other vari-
ables, we call equation (6) the slow subsystem and
equations (4), (5) and (7) the fast subsystem.

3. Simulation

3.1. Typical Membrane Potential

When the coupling gi,j is sufficiently large, the
bursting of a cluster is similar to that of an uncou-
pled single cell and synchronous. In fact, the coupling
of real pancreatic β-cells is generally strong enough to
synchronize the bursting. If the coupling is too weak,
the bursting is almost same for each cell without syn-
chronization. But when it is a middle strength, the
characteristics of bursting change in both models.

The typical membrane potential waveforms of the
two models without and with calcium stores are shown
in Figs.1 and 2, respectively. Panels (a) and (b) corre-
spond to uncoupled cell and coupled cell, respectively.
In both models, an uncoupled cell (Panel (a)) shows
the same regular bursting, while a coupled cell (Panel
(b)) shows different bursting between the two models
when the coupling is middle strength.

A coupled β-cell without calcium stores (Fig.1b)
shows a slightly messy bursting by the influence of
coupling but shows the essentially same bursting as
the uncoupled cell. A coupled β-cell with calcium
stores (Fig.2b), however, shows a topologically differ-
ent bursting from the uncoupled cell.

3.2. Plateau Fraction

Plateau fraction is the ratio of the active phase du-
ration to the period of bursting (active phase is the
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Figure 1: Membrane potential of a β-cell without cal-
cium stores
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Figure 2: Membrane potential of a β-cell considering
calcium stores

state with high membrane potential and with high-
frequency oscillation). Figure 3 shows the plateau frac-
tion of bursting of one cell in the cluster as a function
of the coupling strength in the case of several differ-
ent values of kC . Panels (a) and (b) correspond to
the case without or with calcium stores, respectively.
The constant kC corresponds to the glucose level in
the blood.

The plateau fraction in the case without calcium
stores does not change much for the change of coupling
strength. In the model with calcium stores, however,
the plateau fraction decreases in the range of middle
strength coupling. Because it is thought that insulin is
secreted when the membrane potential of β-cell bursts
(active phase), only the model which considers calcium
stores is suitable for the explanation of physiological
experiment. By the increase of kC , the plateau fraction
increases in both models. This coincides with the fact
that insulin secretion increases by the addition of the
glucose.

In the next section, we clarify the reason why these
behaviors are different between two types of models.

4. Slow-Fast Decomposition Analysis

We show the cause of different behavior between
two models from the aspect of slow-fast decomposition
analysis. This is the way that treats the slow variable
as a parameter approximately because its change is
very slow in comparison with the fast variables.

At first, we consider the single cell model without
calcium stores (Fig.4). The Z-shaped curve in Fig.4 is
the equilibrium point of fast subsystem when the slow
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Figure 3: Plateau fraction as a function of coupling
strength for both models with and without a calcium
store (CS)

variable C is treated as a parameter. The solution of
the full system is also superimposed on it.

In the silent phase, C decreases and V increases
slowly. After reaching the saddle node bifurcation of
the fast subsystem, the solution of full system starts
to burst while C increases slowly. When it reaches
an unstable equilibrium point, homoclinic bifurcation
happens and the bursting terminates. This process is
repeated. In the case of the latter single cell model of
which slow variable is Clum, the dynamics of bursting
is explained by the same mechanism (Fig.5(a)).

Because the temporal change of coupling current is
very complicated and the analysis of the coupled β-
cells is difficult, we consider a single β-cell and add a
constant current instead of coupling current. Then dif-
ferent pattern of bursting appears in the latter model
when constant current is positive (Fig.5(b)). In the
silent phase, the behavior is similar to panel (a). But,
in the active phase, there is no periodic solution of the
fast subsystem because the location of Hopf bifurca-
tion is left of the lower saddle node bifurcation, thus
it converges to a stable equilibrium point with damp-
ing oscillation. When it reaches the upper saddle node
bifurcation, the bursting terminates. This process is
repeated.

Note that the bursting of the single cell with con-
stant current injection in Fig.5(b) much resembles to
that of the coupled cells in Fig.2(b) and thus we study
the effect of the constant current injection into a single
cell.

5. 2-Parameter Bifurcation Analysis

In this section, we treat both the constant current
and the slow variable as parameters and study the 2-
parameter bifurcation of the fast subsystem.

Locations of the saddle node, homoclinic and Hopf
bifurcation in the former model are plotted in Fig.6.
In Fig.6, we can see the relative position of the three
bifurcations is unchanged for any values of the con-
stant current. From the left, there are Hopf bifurca-
tion, one saddle node bifurcation, homoclinic bifurca-
tion and another saddle node bifurcation. The burst-
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Figure 4: Slow-fast decomposition analysis

ing occurs between the left saddle node bifurcation
and the homoclinic bifurcation for any values of the
constant current.

On the contrary, in Fig.7 that is the case of the lat-
ter model, the relative position changes greatly. If the
value of the constant current is negative, the positional
relationship is the same as the former one. When it
is positive, the homoclinic bifurcation disappears and
bursting occurs between two saddle node bifurcations.
In this range, the amplitude of bursting oscillation be-
comes smaller in the right of Hopf bifurcation. This is
the reason of the generation of the different bursting
in Fig.5(b). This shape of bursting is very similar to
that of the latter coupled cell model.

As a summary, this difference of 2-parameter bifur-
cation structure causes the difference of bursting be-
haviors of a coupled-cell cluster between the two mod-
els with and without calcium stores.

6. Approximation of Plateau Fraction

In both models, the slow variable increases in active
phase and decreases in silent phase slowly. We con-
sider that this slow variable dynamics mainly deter-
mines the active phase duration and period of burst-
ing. To evaluate the plateau fraction quantitatively,
we approximate the total dynamics by the slow vari-
able dynamics. In the case of the former model, we
assume that the values of the fast variables mi, ni and
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Figure 5: Slow-fast decomposition analysis

519



-2

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3

C
o
n
st

an
t 

cu
rr

en
t 

(m
A

)

Intracelluar  calcium C (µM)

saddle node bifurcation

Hopf bifurcation
homoclinic bifurcation

(model without CS)
Figure 6: 2-parameter bifurcation diagrams
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Figure 7: 2-parameter bifurcation diagrams

hi are in their steady states which depend on the value
of Vi and obtain the following equation (8) from equa-
tion (2):

Tactive =
∫ T2

T1

dt (8)

=
∫ C

C

1
f [−k1gCm3

i∞hi∞(Vi − VC) − kCCi]
dCi

where Tactive is the active phase duration. T1 and T2

is the starting and terminating time of active phase,
respectively. C and C is the value of the calcium con-
centrations Ci at the time T1 and T2, respectively. Vi

is the average of Vi over one spike in active phase. We
can obtain the active phase duration by two variables:
the slow variable Ci and average of the fast variable Vi.
By the same way, we obtain the silent phase duration
and thus the plateau fraction as follows.

plateau fraction =
Tactive

Tactive + Tsilent
(9)

In the case of the latter model, we also obtain the
durations of both phases from equation (6) by two vari-
ables: the slow variable Clum,i and average of the fast
variable Ci. We can estimate the plateau fraction by
the similar way.
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Figure 8: The result of approximation

The plateau fraction estimated by equation (9) is
shown in Fig.8 as a function of the coupling strength
in the case of several different values of kC . It is shown
that these approximated values of plateau fraction are
in good agreement with the simulation result (Fig.3).

7. Conclusion

We have studied the influence of coupling strength
between pancreatic β-cells on the bursting behavior of
a cell cluster by using two kinds of models. By exam-
ining the plateau fraction, it has been shown that the
model that considers calcium stores is more suitable
for the physiological experimental result.

The difference of bursting for the change of cou-
pling strength between two kinds of models has been
explained by the difference of bifurcation structures us-
ing slow-fast decomposition analysis and 2-parameter
bifurcation analysis of fast subsystems.

In addition, we have approximated the total dynam-
ics by the slow variable dynamics and clarified the rea-
son of the plateau fraction decrease by the reduction
of coupling strength also.
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