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Abstract— It is shown that a semi-invariant and globally
attracting belt exists for a particular class of non-linear
mappings. A Sigma-Delta modulator with a quasiperiodic
input with integrator leakage is an example of an
electronic system described by such a mapping.

1. Introduction

In previous work [1-3] it was established that a specific
class of nonlinear mappings possesses the notable
property that in steady state there exists a semi-invariant
globally attracting belt. A belt is a set bounded by two
contours. A set is semi—invariant with respect to a
mapping if its image under the mapping is contained
within itself [4-6]. A set is globally attracting if every orbit
converges to this set. These type of mappings arise in the
models of a number of electronic circuits that incorporate
quantisation e.g. Sigma-Delta modulators and Digital
Phase Locked Loops. In [2], the application of these
mappings to models of Sigma-Delta modulators and
Digital Phase Locked Loops is discussed in detail. In this
paper, it is shown that this result, namely the existence of
a semi-invariant and globally attracting belt, holds for a
more general class of non-linear mappings. In section 3,
the new theorems are presented. In section 4, the results
are applied to the case of a multibit Sigma-Delta
modulator with a quasiperiodic input with integrator
leakage [6-8].

2. Previous results

In [1-3] the non-linear mapping considered is of the
following form:

)l

where f{#) and g(6) are continuous periodic functions of
period 27 and 6@ is an angular variable where
0 <o, 2x].

The sign function is defined as follows:
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In [1-3] it is shown that if g(6)>0 for every

0 [0, 2], and the magnitude of the average of £(6) is

less than the average of g(€), then there exists a belt
B={0.u)|L(0)<u<U(0)|

such that B is semi-invariant, i.e. M(B) — B ,the bounding

contours U and L are continuous, and B is globally
attracting. In fact, if | f (91 < g(#) for all , then the

boundaries of the belt are given by:

U©)=r(6)+g(0) L(0)= 1(6)-£(0) forall 60, 27].
These results can be applied to the ideal first-

order single bit Sigma-Delta modulator and a first-order

bang-bang phase-locked loop as discussed in [2-3].

In section 3, it is shown how these results namely the

existence of a semi-invariant and globally attracting belt,

holds for a more general class of non-linear mappings.

3. Main Theorem
3.1 The non-linear mapping.

Consider the following non-linear mapping:

(0+w) mod(27)

7
) (rturtorareripen)
where f(@), g(@) are continuous periodic functions of
period 27 .
In order to show that a semi-invariant and globally
attracting belt exists for the mapping in (3), two lemmas
are required. The first lemma defines F (u g(9))

and describes the boundaries of F(u,g(0)). The second

lemma is concerned with the bounding contours
U(6) and L(6) of the belt.

(€)

Lemma 1: Let F(ug(@)) be an odd function in
u satisfying:
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Flu,2(0))= pu + 2(0) us(";jg@
g<e><u<["“jg<e>

k—c
Flu. £(0))= pu - cg(6) uz("”jgw)

—ke(6) < Flu, 5(0))< ke(0) [

p
p

where 0< p<l,c>0and k>0 (cf Figurel)

(4.1)
then
there exist an upper bound and lower bound
ef(u, g(ﬁ)) nlu, g(&)) of F (u g(@)) such that:
n(u.g(6))=-(u.g(0)) (4.2)

forallu" <u<u'.
(4.3)

' .2(0))< Flug(0)) < elu'2(0)

f(u, g(H)) and n(u, g(@)) are continuous, monotone non-

decreasing in u, (4.4)
E(u+0,.g(0)) < E(wg(8))+ po and
n(u—0.2(0))> nlug(0))- po
forall >0, forallu, (4.5)
A
Flu.g0)
M
k-c k+c
(=eke) =< ke)
~kg(0)

Figure 1 : The region in which the graph of /' (u g(é)))
can lie.
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Fig{Jre 2 : An example of &(u, g(0)), 7(u, g(0)) which
satisfy (A.2-A.5).

The functions &(u, g(6)), 7(u, g(0)) relate to the bounding
contours of the belt U (6) and L(G) .

Lemma 2: [f g(@) >0 forall 8, then for any upper and
lower bound E(u, g(6)), n(u, g(0)) which satisfy (4.2-4.6)
there exist unique functions U(0) and L(9) defined

on [0, 27r] such that:

u(0)= 1(0)+elulro). o)) 1)
-1 )
L(0)= 1(0) +nlz(r0), ¢(0))
where T0 = (0 + ») mod(27),
U and L are continuous, (B.2)
U(8)= L) forall 6|0, 2x]. (B.3)
A

Theorem 1 presents the conditions under which the
bounding contours U(6) and L(#) which satisfy (B.1-B.3)

describe a belt that is semi-invariant and globally
attracting.

Theorem 1: If g(0)>0 forall Oand if F(u,g(0))

satisfies the conditions of lemmal, then there exist
contours U (H) and L(H) which satisfy (B.1-B.3) such that

there exists a belt given by:
B= {(6’,14) |L(6’)£ u< U(H)} forall 0e [0, 27r]

which is semi-invariant and globally attracting.

A
The proofs of lemma 1, lemma 2 and Theorem 1 are not
included due to lack of space.

Theorem 2 is an extension of Theorem 1. It shows that if
the input /(6) lies within a certain range, then the

bounding contours U() and L(9) have a simple form.

Theorem 2: If g(0)=g >0 forall 0, if F(u,g(0))
satisfies the conditions of lemmal and if

17(6) < gKk—;"]ﬁ —p)+ c} forall 6 < [0, 2z], then

there exists a U (H) and L(H) which satisfy (B.1-B.3) and
are given as:
U(0)=1(0)+kg(0)
L(6)= 110) ~kg(0)
These U(ﬁ) andL(H) describe a belt B,
B={0.u) [L(0)<u<U©O)| forall 6¢]o,2x]

which is semi-invariant and globally attracting.

forall 6¢€|0,2x].

(.1

A
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Proof of Theorem 2:
Define &(u, g(&)) as follows:

pu+cg(6) u< —(k; c}g@)
Huglo)=] kelo) —(’“;C]g(mw{"; jgw)
pu—cgl6) uz[";CJg(e)

4. Sigma-Delta Modulator

Consider the multibit Sigma-Delta (£A) modulator with
integrator leakage as shown in Figure 3. XA modulators
are used in analog-to-digital and digital-to-analog
conversion and are based around the use of feedback to

improve the effective resolution of a coarse quantiser [7-
8].

Discrete-time integrator

Xy U,

(D.1)
and define 77(u, g(@)) so that it satisfies (A.2). It can be

shown that &(u, g(0)), 7, g(9)) satisfy (A.2-A.6). It
follows that the conditions of lemma 2 hold. Hence, there
exist unique functions U(¢) and L(#) which satisfy (B.1-
B.3).

Furthermore, consider
U(6)=1(0)+ke(0)
L(0)= 1 (0) ~ke(6)

By (D.1) &/ (r7'0)+ kelr™0), ¢(0))= ke(0)

If |U(T’16’] < [%j 5(6) then
|7(r0)s kelr o) < (%Jg(e)
= | f(T-19] < g{[%}(l -p)+ c}

as g(0)= g(T”H)

forall 6 € [0, 2x].

=g
Since, |f(t9]<g kte
p

then

0(0)= 1(0)+0(r0). £0))= 1(6)+ke(6)
Similarily, for L(6).

U(9), L(9) satisfy (B.1-B.3).
These functions are unique and hence,
U(6)=0(0)= 1(6)+ke(6)
L(0)=L(0)=1(0) - ks(0)
By Theorem 1, the contours U(6) and L(#) describe a
belt given by:

B={0.u)|L(0)<u<U(0)] forall 6e o 2]

which is semi-invariant and globally attracting.

j(l -p)+ c} forall 6 € [0, 2x],

for all 6 € [0, 2x].

Delay

Qi)

+ +
- +

Figure 3 : Discrete-time first-order XA modulator.

Y

Figure 3 shows the basic first order XA modulator in
discrete time with integrator leakage [7] incorporated into
the £A model by taking 0 < p <1 in the system of Figure
3. The non-ideal discrete-time system is modelled by the
equation

Uy =PpUy + X, — Qm(un) (4)
where
1 0<u<—2-
m—1 m—1
3 2 4
W masdSLT
5 4
m ﬁ sus m—1
Oulu)=1 | wo (5)
m—1
S —2 <y<o0
m—1 m—1
m—2
-1 U=

Letx, = f(6, ) where 8, = (6’,1 +o) mod(27z) and f(0)is
a continuous periodic function with period 27 and @is an
angular variable where 6 € [0, 27[] .

Converting equation (4) to autonomous form:

TR

where M is given as follows with g(8) =1:

" [QJ . ( O+w mod(2r) j o
u pu—g(0+a))Qm(u)+f(0+w)

This is in the form of equation (3), with

F(u,g(0) = pu-2(0)0,, ), g(6)=1. ®)
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Figure 4 : Graph of F(u,l) with m=4 and p=0.5.

Consider the following example. Figure 4 shows the
graph of F(u, g(9)) where F(u,1) with p=0.5andm =4 .
Comparing Figure 4 with Figurel, it is clear that
F (u, g(&)) satisfies the conditions of lemma 1

with p=0.5,c=landk=24 . Since, g(0)=1 and if

k+c

|f<91<g<e>{[ :

of Theorem 2 are satisfied. Hence,

u(®) f(9)+§ and L(0)= f(H)—% are the bounding

j(l -p)+ 1} = % then the conditions

contours of a belt which is semi-invariant and globally
attracting with respect to system (6).

Figure 5 shows that when | f (9) < % for allf [(), 27:] the
orbit is bounded by the belt given in (E.1). Figure 6 shows
that when | f (9) >§ for some @ e [0, 27] the orbit is no

longer bounded by the belt given in (E.1).
5. Conclusion

It has been shown that for a general class of non-linear
mappings, there exists a semi-invariant, globally attracting
belt. In fact, if the input lies within a certain range, the
boundaries of the belt have a simple form. These results
are applied to the case of a multibit Sigma-Delta
modulator with integrator leakage.
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Figure 5 : An orbit of (5) with with f{8)=2.5cos(0),
®=0.01, m=4, p=0.5. The belt bounded by 2.5cos(0)+2/3
and 2.5cos(0)-2/3 is plotted.
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Figure 6 : An orbit of (5) with with f{0)=3cos(0), ©®=0.01,
m=4,p=0.5. The belt bounded by 3cos(0)+2/3 and
3cos(0)-2/3 is also plotted.
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