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Abstract—We propose a time-optimum (2n − 2)-
step firing squad synchronization algorithm for a new
class of cellular automata, CA1-bit, whose inter-cell
communication amount at one step is restricted to 1-
bit. The number of internal states of each cell imple-
mented is 78 and the total number of transition rules
is 208.

1. Introduction

In the long history of the study of the CA, gener-
ally speaking, the number of internal states of each
cell is finite and the local state transition rule is de-
fined in a such way that the state of each cell depends
on the previous states of itself and its neighboring
cells. Thus, in the finite state description of the CA,
the amount of communication bits exchanged at one
step between neighboring cells is assumed to be O(1)-
bit, however, such bit-information exchanged between
inter-cell has been hidden behind the definition of con-
ventional automata-theoretic finite state description.

In the present paper, we focus our attention to the
communication bits exchanged between inter-cells and
introduce a new class of cellular automata, CA1-bit,
whose inter-cell communication amount at one step
is restricted to 1-bit. We refer the model as 1-bit CA.
The number of internal states of the CA1-bit is assumed
to be finite in a usual sense. The next state of each cell
is determined by the present state of itself and two bi-
nary 1-bit inputs from its left and right neighbor cells.
Thus the 1-bit CA can be thought of as one of the most
powerless and the simplest models in a variety of CAs.
We study a classical firing squad synchronization prob-
lem that gives a finite-state protocol for synchronizing
a large scale of cellular automata, in which it was orig-
inally proposed by J. Myhill to synchronize all parts
of self-reproducing cellular automata [5]. The firing
squad synchronization problem has been studied ex-
tensively for more than 40 years [1-11]. It is important
and interesting to develop optimum-time algorithms
on the most powerless and the simplest models in a va-
riety of CAs. First, we introduce a cellular automaton
with 1-bit inter-cell communication and define the fir-
ing squad synchronization problem on CA1-bit. Then,

C1 C2 C3 C4 Cn

Figure 1: A one-dimensional cellular automaton hav-
ing 1-bit inter-cell communication.

we give an optimum-time firing squad synchronization
algorithm on CA1-bit. The algorithm is based on the
classical synchronization scheme developed by Waks-
man [11], having O(1)-bit communication, and it will
be implemented on a CA1-bit with 78 internal states
and 208 transition rules.

2. A Firing Squad Synchronization Problem on
CA1−bit

2.1. 1-Bit Communication Cellular Automaton

A one-dimensional 1-bit inter-cell communication
cellular automaton consists of an infinite array of iden-
tical finite state automata, each located at positive in-
teger point. See Fig. 1. A cell at point i is denoted
by Ci, where 1 ≤ i ≤ n. Each Ci, except C1 and Cn,
is connected with its left and right neighbor cells via
a left or right one-way communication link, in which
those communication links are indicated by right- and
left-going arrows, as is shown in Fig. 1, respectively.
Each one-way communication link can transmit only
one bit at each step in each direction. The array op-
erates in lock-step mode in such a way that the next
state of each cell (except both end cells) is determined
by both its own present state and the present binary
inputs of its right and left neighbors. A more for-
mal treatment can be found in Nishimura, Sogabe and
Umeo [6, 7]. The CA1-bit is a special subclass of nor-
mal (i.e., conventional) cellular automata studied so
far.

2.2. Firing Squad Synchronization Problem on
CA1−bit

The firing squad synchronization problem is formal-
ized in terms of the model of CA1−bit. All cells (sol-
diers), except the left and right end cells, are initially
in the quiescent state at time t = 0 with the property
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that the next state of a quiescent cell with quiescent
neighbors is the quiescent state again. At time t = 0
the general cell C1 is in fire-when-ready state that is an
initiation signal to the array. The firing squad synchro-
nization problem [1, 5, 11] is stated as follows: Given
an array of n identical cellular automata, including a
general on the left end cell which is activated at time
t = 0, we want to give the description (state set and
next-state function) of the automata so that, at some
future time, all the cells will simultaneously and, for
the first time, enter a special firing state. The set of
states and the next-state function must be indepen-
dent of n. The tricky part of the problem is that the
same kind of soldier with a fixed number of states is
required to synchronize, regardless of the length n of
the array.

3. Waksman’s Optimum-Time Algorithm

3.1. Outline of Waksman’s Algorithm

a-signal

a-signal

1/1

1/(2k-1)

n+1
2

G1

3-bits

1-bits

1-bits 3-bits

1-bits

n

1/1

b2-signal

G2

1/3

b3-signal

1/7

S1S2

G3
bk-1-signal

Gk

Sk
t=2n-2

t = n-1

CnC1C2
t = 0

G0

n+2k-1

2k

n+3
4

. . . . . . . .

Figure 2: Time-space dia-
gram for Waksman’s syn-
chronization algorithm.

Waksman’s algo-
rithm is constructed
on the conventional
O(1)-bit communica-
tion CA, and it can
synchronize any cel-
lular array consisting
of n cells at exactly
2n − 2 steps. Fig-
ure 2 shows its time-
space diagram for the
synchronization. At
time t = 0, a gen-
eral G0, located at
C1, generates an a-
signal and k − 1 bk-
signals, where 2 ≤
k ≤ �log2 n� − 1.
The a-signal propa-
gates right at the
sloop of 1

1 (one cell per step). The bk-signal propagates
in the right direction at the sloop of 1

2k−1
(one cell per

2k −1 step). The a-signal reaches Cn at t = n−1, and
generates G1 there and then it reflects and proceeds
in the left direction at the same speed. The reflected
signal meets b2-signal, b3-signal, . . ., bk-signal, and
generates k− 1 generals G2, G3, . . ., Gk at each cross-
ing point, respectively. Let S be any cellular space
and |S| be size of S. Let S0 be the initial cellular
space consisting of n cells and Si be a cellular space
betwen Gi+1 and Gi. The general Gi is responsible for
synchronizing Si for any i such that 1 ≤ i ≤ k.

3.2. Generation of Generals

Gi is generated at the position which divides exactly
|Si−2|. Therefore the parity of |Si−2| is an important
factor for generating Gi. If the parity of |Si−2| is an
odd number , Gi consists of a cell. And if the parity of
|Si−2| is an even number, Gi consists of two cells. This
parity information is determined by the cell on Gi−1,
and it is transmitted to the cell of Gi by the a-signal.
The signal can mark the general state Gi on the cell.
Figure 2 is a time-space diagram for generating G2 in
case of that n is an even number. G2 is on Cm, and
consists of two cells. One of the cells includes the left
part of the cellular array that is denoted C1Cm, and
another includes the right part of the cellular array
that is denoted Cm+1Cn. In this case, G2 of the right
part is generated at t = 3n−4

2 , and G2 of the left part
is generated at t = 3n−2

2 . Therefore the right part has
been synchronized earlier than the left part. In this
case, Waksman’ solution is that the right part starts
to synchronize with delayed 1 step. The technique is
referred to as delaying. In the case that the parity of
|Si−1| is an even number, Gi uses the delaying. When
the parity of |Si−1| is an odd number , Gi doesn’t use
it.

4. Time-Optimum Firing Squad Synchroniza-
tion Algorithm on CA1−bit

We design a firing squad synchronization algorithm
on CA1-bit based on Waksman’s algorithm.

4.1. Generation of infinite signals

The key idea is the following construction of an in-
finite set of 1-bit signals which propagate at 1

2k+1−1
-

speed in one-way direction on a CA1-bit.
[Lemma 1] There exists a CA1-bit that can generate
an infinite set of signals which are used efficiently in
Waksman’s algorithm [11]. Precisely, for any n ≥ 2,
the initial left-end General G generates k signals w1,
w2, . . ., wk propagating at speed 1/(2k+1 − 1) on n
cells, where k = �log2(2n − 2)� − 1.

We need two bits that constitute the parity of |Si−2|
and |Si−1| so that we can generate Gi on right cell
in real time. On the CA1-bit, both two bits can’t be
carried on a single 1-bit a-signal. Thus we have to
develop a new technique for the real-time generation
of generals.

4.2. Parity of |Si−2|
A a-signal, which propagates from Gi to Gi+1, de-

fines aGi -signal. The aGi-signal communicates a 1-bit
information that is the parity of |Si−1|. This informa-
tion is determined on Gi, so that aGi

-signal on CA1-bit

can’t communicate it like one on CA. And this in-
formation isn’t communicated by aGi

-signal, but it is

638



B1 R0 Q Q Q Q Q B0 Q R0

Q B0 Q Q Q Q Q B0 R0 Q

Q B0 Q Q Q Q Q R0 B1 A000

Q B0 Q Q Q Q R0 Q P0 Q

Q B0 Q Q Q R0 Q A000 P0 A010

Q B0 Q Q R0 Q A001 B0 P0 B0

Q B0 Q R0 Q A000 Q B0 P0 B0

Q B0 R0 Q A001 Q R1 B0 P0 B0

Q R0 B1 A000 Q Q B1 R1 P0 R0

R0 Q P0 Q R1 Q B1 B0 P0 B0

Q A000 A010 Q R1 B1 B0 P0 B0

A001 B0 B0 A011 B0 Q B0 P0 B0

Q B0 B0 Q P1 Q B0 P0 B0

A110 B0 B0 A100 P1 B0 P0 B0

P1 P1 P1 P1 P1 P1 P1 P0 P1

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 T T T T T T T T

10 11 12 13 145 6 7 8 9

B1 R0 Q Q Q Q Q B0 Q R0

Q B0 Q Q Q Q Q B0 R0 Q

Q B0 Q Q Q Q Q R0 B1 Q

Q B0 Q Q Q Q R0 Q B1 Q

Q B0 Q Q Q R0 Q Q B1 A101

Q B0 Q Q R0 Q Q Q P0

Q B0 Q R0 Q Q Q A000

Q B0 R0 Q Q Q A001

Q R0 B1 Q Q A000

R0 Q B1 Q A001

Q Q B1 A000 R1

Q Q P0 R1

Q A000 A010 Q R1 B1 B0

A001 B0 B0 A011 B0 Q B0

Q B0 B0 Q P1 Q B0

B1 B0

Q B0

Q B0

A001 B0 P0 A011 B0 Q B0 Q B0

P0

P0

10 11 12 13 145 6 7 8 9

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B1 R0 Q Q Q Q Q B0 Q R0 Q

Q B0 Q Q Q Q Q B0 R0 Q Q

Q B0 Q Q Q Q Q R0 B1 Q Q

Q B0 Q Q Q Q R0 Q B1 Q R0

Q B0 Q Q Q R0 Q Q B1 R0 Q

Q B0 Q Q R0 Q Q Q Q B0 A001

Q B0 Q R0 Q Q Q Q Q P1 Q

Q B0 R0 Q Q Q Q Q A100

Q R0 B1 Q Q Q Q A101 R1 P1 R0

R0 Q B1 Q Q Q A100 Q B0 P1 B0

Q Q B1 Q Q A101 R1 Q B0 P1 B0

Q Q B1 Q A100 Q Q R1 B0 P1 B0

Q Q B1 A101 R1 Q Q B1 R1 P1 R0

Q Q P0 P0 Q R1 Q B1 B0 P1 B0

Q A000 P0 P0 A010 Q R1 B1 B0 P1 B0

A001 B0 P0 P0 B0 A011 B0 Q B0 P1 B0

P0

10 11 12 13 145 6 7 8 9 15

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B1 R0 Q Q Q Q Q B0 Q R0 Q

Q B0 Q Q Q Q Q B0 R0 Q Q

Q B0 Q Q Q Q Q R0 B1 Q Q

Q B0 Q Q Q Q R0 Q B1 Q R0

Q B0 Q Q Q R0 Q Q B1 R0 Q

Q B0 Q Q R0 Q Q Q Q B0 Q

Q B0 Q R0 Q Q Q Q Q B0 Q

Q B0 R0 Q Q Q Q Q Q B0 A100

Q R0 B1 Q Q Q Q Q Q P1 P1

R0 Q B1 Q Q Q Q Q A100 P1 P1

Q Q B1 Q Q Q Q A101 R1 P1 P1

Q Q B1 Q Q Q A100 Q B0 P1 P1

Q Q B1 Q Q A101 R1 Q B0 P1 P1

Q Q B1 Q A100 Q Q R1 B0 P1 P1

Q Q B1 A101 R1 Q Q B1 R1 P1 P1

Q Q P0 P0 Q R1 Q B1 B0 P1 P1

10 11 12 13 145 6 7 8 9 15

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

n=25 n=26

n=27 n=28

Cell

S
te

p

   Crossing 

      before the half time

Generation of G3 that consists of two cells

Generation of G2 at even-number cell.

Generation of G2 at odd-number cell

b3-signal

  at the half time

      of full staying 

time in C7

Generation of G3 that consists of only one cell

b2--signal

b3-signal

a-signal

Crossing

     after the half time

b3-signal

  at the half time

      of full staying 

time in C7

Figure 3: Generation of G3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 P0 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 P0 A010 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 P0 B0 A011 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 P0 B0 Q A010 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

4 P0 B0 R0 Q A011 Q Q Q Q Q Q Q Q Q Q Q Q Q Q

5 P0 R0 B1 Q Q A010 Q Q Q Q Q Q Q Q Q Q Q Q Q
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Figure 4: Relation of a-signal and b2-signal

determined by the cell on which Gi+1 is generated.
Therefore a-signal can’t include this information. we
need to find an other technique.
Here, we have found a rule, when Gi is generated by
the crossing of bi-signal and a-signal. Figure 3 shows
all cases in which G3 is generated on C7. In this fig-
ure, n means |S0|. G3 is generated by the crossing of
b3-signal and a-signal. We have investigated a parity
of a cell on which G2, which has been the previous
gerenal, has been located. As a result, when G2 has
been located at odd-numbered cell, which had been
counted from G0, G3 has always consisted of only one
cell. And when G2 has been located at even-numbered
cell, which had been counted from G0, G3 has always
consisted of two cells. And the parity of a cell, on
which G2 stays, is equal to the parity of |S1|. If based
on G3, |S1| becomes |Si−2|.

Next, we must investigate how to get the parity of
|Si−2| at C7. The b3-signal stays on C7 between 7
steps. In this figure, a horizontal line is pulled to a
half time of b3-signal full staying time. If the crossing
happens before the half time, G2 always positioned at
odd-number cell. And if the crossing happens after the
half time, G2 always positioned at even-number cell.

The bi-signal stays on Cmi from t = (2i − 1)mi − 2i

through t = (2i − 1)mi − 2. We define αi, however

1 ≤ αi ≤ 2i − 1 as a variable that means the offset
time. We can express the staying time of bi-signal by
using this equation.

t = (2i − 1)mi − 2i − 1 + αi (1)

And, a-signal, which crosses bi-signal on Cmi , arrives
at Cmi+1 at time=t, where t is expressed by the fol-
lowing equation.

t = −mi + 2n − 2 (2)

From equations (1) and (2) we get:

2imi = 2n + 2i − 1 − αi, (3)
1 ≤ αi ≤ 2i − 1.

mi is always an integer that leads to the equation(3),
because αi must be an odd number. When αi is an
even number, bi-signal doesn’t cross the a-signal on
Cmi . In addition, we are also examined that the cross-
ings of bi−1-signal and a-signal on Cmi−1 . We can also
express mi−1 by this equation such that:

2i−1mi−1 = 2n + 2i−1 − 1 − αi−1, (4)
1 ≤ αi−1 ≤ 2i−1 − 1

Then we have equation(5).

2i · mi − 2i−1 · mi−1 = 2i − 2i−1 − αi + αi−1(5)

In this case, αi and αi−1 are expressed as follows.
(i)If Cmi−1 is located on odd-number cell,

αi = αi−1 (6)

(ii)If Cmi−1 is located on even-number cell,

αi = αi−1 + 2i−1 (7)

Therefore we get equations (8) and (9).
When mi−1 is an odd number,

mi =
mi−1 + 1

2
(8)

And when mi−1 is an even number,

mi =
mi−1

2
(9)

The bi-signal on CA1-bit needs a trigger signal that will
arrive after a half time of bi-signal full staying time.
Thus we have:
[Lemma 2] There exist a 1-bit signal that can deter-
mine the parity of |Si−2| in time.
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4.3. Parity of |Si−1|
The aGi

-signal counts the parity of |Si| from Gi to
Gi+1. The aGi -signal on CA1-bit can’t count it. And
this information is also determined by the cell on which
Gi+1 is generated. Therefore a-signal can’t also in-
clude this information. we need to find an other tech-
nique. Gi stays on the center of Si−2. Here we define
C1CGi , which is the left part of Si−2. Because C1CGi

is the same size as Si−1, we can get the parity of |Si−1|
at CGi

, when Gi is generated. Figure 4 shows a prop-
agation of the a-signal and the bi-signal in Waksman’s
algorithm. In this figure, we focus an offset time af-
ter a-signal passes until b2-signal arrives. On any Cm,
where m is a positive integer and it is bigger than 1,
the offset time can lead to this equation.

∆t = 2p − 3 (10)

In this case, we define ∆t that is the remainder which
divided the offset time by 4，If p = 2x,

∆t mod 4 = 4x − 3 = 4(x − 1) + 1 (11)

If p = 2x + 1,

∆t mod 4 = 4x − 1 = 4(x − 1) + 3 (12)

[Lemma 3] There exist 1-bit signals that can deter-
mine the parity of |Si−1|.

Based on lemmas above, our main theorem is stated
as follows:
[Theorem 4] There exists a CA1-bit which can syn-
chronize any n cells in 2n − 2 steps. A CA1-bit imple-
mented has 78 internal states and 208 transition rules.

In Fig. 5 we show snapshots of the synchronization
processes. Small right and left black triangles, shown
� and � in the figure, indicate a 1-bit transfer in the
right or left direction between neighboring cells. A
symbol in a cell shows its internal state.

5. Conclusion

We have designed and implemented an optimum-
time firing squad synchronization algorithm on CA1-

bit. Each cell has 78 internal states and 208 transition
rules, and we checked its validity from n = 2through
n = 10000 by computer simulation.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 PW Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QW

1 PW AR’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QW

2 PW BR01 AR’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QW

3 PW BR00 sub AR’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QW

4 PW BR0S odd sub AR’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QW

5 PW QR0S BR11 QRB sub AR’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QW

6 PW BR0u1 BR10 QRC odd sub AR’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QW

7 PW BR0u0 BR1S QRD QRC QRB sub AR’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QW

8 PW BR0uS QR10 BR01 QRD QRC odd sub AR’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QW

9 PW BR0v0 QR11 BR00 QRA QRD QRC QRB sub AR’ Q Q Q Q Q Q Q Q Q Q Q Q Q Q QW

10 PW BR0v1 QR10 BR0S QRB QRA QRD QRC odd sub AR’ Q Q Q Q Q Q Q Q Q Q Q Q Q QW

11 PW BR0v0 RL1 QR00 BR11 QRB QRA QRD QRC QRB sub AR’ Q Q Q Q Q Q Q Q Q Q Q Q QW

12 PW BR0vS QR1S QR01 BR10 QRC QRB QRA QRD QRC odd sub AR’ Q Q Q Q Q Q Q Q Q Q Q QW

13 PW QR0S BR1u1 QR00 BR1S QRD QRC QRB QRA QRD QRC QRB sub AR’ Q Q Q Q Q Q Q Q Q Q QW

14 PW BR0u1 BR1u0 RL0 QR10 BR01 QRD QRC QRB QRA QRD QRC odd sub AR’ Q Q Q Q Q Q Q Q Q QW

15 PW BR0u0 BR1uS QR0S QR11 BR00 QRA QRD QRC QRB QRA QRD QRC QRB sub AR’ Q Q Q Q Q Q Q Q QW

16 PW BR0u1 BR1v0 QR01 QR10 BR0S QRB QRA QRD QRC QRB QRA QRD QRC odd sub AR’ Q Q Q Q Q Q Q QW

17 PW BR0u0 BR1v1 QR00 RL1 QR00 BR11 QRB QRA QRD QRC QRB QRA QRD QRC QRB sub AR’ Q Q Q Q Q Q QW

18 PW BR0u1 BR1v0 RL0 QR1S QR01 BR10 QRC QRB QRA QRD QRC QRB QRA QRD QRC odd sub AR’ Q Q Q Q Q QW

19 PW BR0u0 BR1vS QR0S QR11 QR00 BR1S QRD QRC QRB QRA QRD QRC QRB QRA QRD QRC QRB sub AR’ Q Q Q Q QW

20 PW BR0uS QR10 BR0u1 QR10 RL0 QR10 BR01 QRD QRC QRB QRA QRD QRC QRB QRA QRD QRC odd sub AR’ Q Q Q QW

21 PW BR0v0 QR11 BR0u0 RL1 QR0S QR11 BR00 QRA QRD QRC QRB QRA QRD QRC QRB QRA QRD QRC QRB sub AR’ Q Q QW

22 PW BR0v1 QR10 BR0uS QR1S QR01 QR10 BR0S QRB QRA QRD QRC QRB QRA QRD QRC QRB QRA QRD QRC odd sub AR’ Q QW

23 PW BR0v0 QR11 BR0v0 QR11 QR00 RL1 QR00 BR11 QRB QRA QRD QRC QRB QRA QRD QRC QRB QRA QRD QRC QRB sub AR’ QW

24 PW BR0v1 QR10 BR0v1 QR10 RL0 QR1S QR01 BR10 QRC QRB QRA QRD QRC QRB QRA QRD QRC QRB QRA QRD QRC odd sub PW

25 PW BR0v0 QR11 BR0v0 RL1 QR0S QR11 QR00 BR1S QRD QRC QRB QRA QRD QRC QRB QRA QRD QRC QRB QRA QRD QRC AL0 PW

26 PW BR0v1 QR10 BR0vS QR1S QR01 QR10 RL0 QR10 BR01 QRD QRC QRB QRA QRD QRC QRB QRA QRD QRC QRB QRA AL BL01 PW

27 PW BR0v0 RL1 QR00 BR1u1 QR00 RL1 QR0S QR11 BR00 QRA QRD QRC QRB QRA QRD QRC QRB QRA QRD QRC AL QLA BL00 PW

28 PW BR0vS QR1S QR01 BR1u0 RL0 QR1S QR01 QR10 BR0S QRB QRA QRD QRC QRB QRA QRD QRC QRB QRA AL QLA QLB BL0S PW

29 PW QR0S BR1u1 QR00 BR1uS QR0S QR11 QR00 RL1 QR00 BR11 QRB QRA QRD QRC QRB QRA QRD QRC AL QLA QLB BL11 QL0S PW

30 PW BR0u1 BR1u0 QR01 BR1v0 QR01 QR10 RL0 QR1S QR01 BR10 QRC QRB QRA QRD QRC QRB QRA AL QLA QLB QLC BL10 BL0u1 PW

31 PW BR0u0 BR1u1 QR00 BR1v1 QR00 RL1 QR0S QR11 QR00 BR1S QRD QRC QRB QRA QRD QRC AL QLA QLB QLC QLD BL1S BL0u0 PW

32 PW BR0u1 BR1u0 QR01 BR1v0 RL0 QR1S QR01 QR10 RL0 QR10 BR01 QRD QRC QRB QRA AL QLA QLB QLC QLD BL01 QL10 BL0uS PW

33 PW BR0u0 BR1u1 QR00 BR1vS QR0S QR11 QR00 RL1 QR0S QR11 BR00 QRA QRD QRC AL QLA QLB QLC QLD QLA BL00 QL11 BL0v0 PW

34 PW BR0u1 BR1u0 RL0 QR10 BR0u1 QR10 RL0 QR1S QR01 QR10 BR0S QRB QRA AL QLA QLB QLC QLD QLA QLB BL0S QL10 BL0v1 PW

35 PW BR0u0 BR1uS QR0S QR11 BR0u0 RL1 QR0S QR11 QR00 RL1 QR00 BR11 AL QLA QLB QLC QLD QLA QLB BL11 QL00 RR1 BL0v0 PW

36 PW BR0u1 BR1v0 QR01 QR10 BR0uS QR1S QR01 QR10 RL0 QR1S QR01 P0s QLA QLB QLC QLD QLA QLB QLC BL10 QL01 QL1S BL0vS PW

37 PW BR0u0 BR1v1 QR00 QR11 BR0v0 QR11 QR00 RL1 QR0S QR11 AL P0 AR QLC QLD QLA QLB QLC QLD BL1S QL00 BL1u1 QL0S PW

38 PW BR0u1 BR1v0 QR01 QR10 BR0v1 QR10 RL0 QR1S QR01 AL BL01 P0 BR01 AR QLA QLB QLC QLD BL01 QL10 RR0 BL1u0 BL0u1 PW

39 PW BR0u0 BR1v1 QR00 QR11 BR0v0 RL1 QR0S QR11 AL QLA BL00 P0 BR00 QRA AR QLC QLD QLA BL00 QL11 QL0S BL1uS BL0u0 PW

40 PW BR0u1 BR1v0 QR01 QR10 BR0vS QR1S QR01 AL QLA QLB BL0S P0 BR0S QRB QRA AR QLA QLB BL0S QL10 QL01 BL1v0 BL0u1 PW

41 PW BR0u0 BR1v1 QR00 RL1 QR00 BR1u1 AL QLA QLB BL11 QL0S P0 QR0S BR11 QRB QRA AR BL11 QL00 RR1 QL00 BL1v1 BL0u0 PW

42 PW BR0u1 BR1v0 RL0 QR1S QR01 P0s QLA QLB QLC BL10 BL0u1 P0 BR0u1 BR10 QRC QRB QRA P0s QL01 QL1S RR0 BL1v0 BL0u1 PW

43 PW BR0u0 BR1vS QR0S QR11 AL P0 AR QLC QLD BL1S BL0u0 P0 BR0u0 BR1S QRD QRC AL P0 AR QL11 QL0S BL1vS BL0u0 PW

44 PW BR0uS QR10 BR0u1 AL BL01 P0 BR01 AR BL01 QL10 BL0uS P0 BR0uS QR10 BR01 AL BL01 P0 BR01 AR BL0u1 QL10 BL0uS PW

45 PW BR0v0 QR11 P1s QLA BL00 P0 BR00 QRA P1s QL11 BL0v0 P0 BR0v0 QR11 P1s QLA BL00 P0 BR00 QRA P1s QL11 BL0v0 PW

46 PW BR0v1 AL P1 AR BL0S P0 BR0S AL P1 AR BL0v1 P0 BR0v1 AL P1 AR BL0S P0 BR0S AL P1 AR BL0v1 PW

47 PW P1 PA P1 PA P1 P0 P1 PA P1 PA P1 P0 P1 PA P1 PA P1 P0 P1 PA P1 PA P1 PW

48 T T T T T T T T T T T T T T T T T T T T T T T T T

Figure 5: Snapshots of our time-optimum synchroniza-
tion on CA1-bit consisting of 25 cells.
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