An Implementation of Optimum-Time Firing Squad Synchronization Algorithm on 1-Bit Cellular Automaton

Jun Nishimura ${ }^{\dagger}$ and Hiroshi Umeo ${ }^{\ddagger}$
\dagger MegaChips System Solutions Inc. Yodogawa-ku, Miyahara, 4-1-6, Osaka, Japan
\ddagger Univ. of Osaka Electro-Communication, Faculty of Information Science and Technology, Neyagawa-shi, Hatsu-cho, 18-8, Osaka, Japan

Abstract

We propose a time-optimum ($2 n-2$)step firing squad synchronization algorithm for a new class of cellular automata, CA1-bit, whose inter-cell communication amount at one step is restricted to 1 bit. The number of internal states of each cell implemented is 78 and the total number of transition rules is 208 .

1. Introduction

In the long history of the study of the CA, generally speaking, the number of internal states of each cell is finite and the local state transition rule is defined in a such way that the state of each cell depends on the previous states of itself and its neighboring cells. Thus, in the finite state description of the CA, the amount of communication bits exchanged at one step between neighboring cells is assumed to be $\mathrm{O}(1)$ bit, however, such bit-information exchanged between inter-cell has been hidden behind the definition of conventional automata-theoretic finite state description.

In the present paper, we focus our attention to the communication bits exchanged between inter-cells and introduce a new class of cellular automata, CA1-bit, whose inter-cell communication amount at one step is restricted to 1-bit. We refer the model as 1-bit CA. The number of internal states of the CA1-bit is assumed to be finite in a usual sense. The next state of each cell is determined by the present state of itself and two binary 1-bit inputs from its left and right neighbor cells. Thus the 1-bit CA can be thought of as one of the most powerless and the simplest models in a variety of CAs. We study a classical firing squad synchronization problem that gives a finite-state protocol for synchronizing a large scale of cellular automata, in which it was originally proposed by J. Myhill to synchronize all parts of self-reproducing cellular automata [5]. The firing squad synchronization problem has been studied extensively for more than 40 years [1-11]. It is important and interesting to develop optimum-time algorithms on the most powerless and the simplest models in a variety of CAs. First, we introduce a cellular automaton with 1-bit inter-cell communication and define the firing squad synchronization problem on CA1-bit. Then,

Figure 1: A one-dimensional cellular automaton having 1-bit inter-cell communication.
we give an optimum-time firing squad synchronization algorithm on CA1-bit. The algorithm is based on the classical synchronization scheme developed by Waksman [11], having $\mathrm{O}(1)$-bit communication, and it will be implemented on a CA1-bit with 78 internal states and 208 transition rules.

2. A Firing Squad Synchronization Problem on $\mathrm{CA}_{1 \text {-bit }}$

2.1. 1-Bit Communication Cellular Automaton

A one-dimensional 1-bit inter-cell communication cellular automaton consists of an infinite array of identical finite state automata, each located at positive integer point. See Fig. 1. A cell at point i is denoted by C_{i}, where $1 \leq i \leq n$. Each C_{i}, except C_{1} and C_{n}, is connected with its left and right neighbor cells via a left or right one-way communication link, in which those communication links are indicated by right- and left-going arrows, as is shown in Fig. 1, respectively. Each one-way communication link can transmit only one bit at each step in each direction. The array operates in lock-step mode in such a way that the next state of each cell (except both end cells) is determined by both its own present state and the present binary inputs of its right and left neighbors. A more formal treatment can be found in Nishimura, Sogabe and Umeo $[6,7]$. The CA1-bit is a special subclass of normal (i.e., conventional) cellular automata studied so far.

2.2. Firing Squad Synchronization Problem on $\mathrm{CA}_{1-\mathrm{bit}}$

The firing squad synchronization problem is formalized in terms of the model of $\mathrm{CA}_{1-\text { bit }}$. All cells (soldiers), except the left and right end cells, are initially in the quiescent state at time $t=0$ with the property
that the next state of a quiescent cell with quiescent neighbors is the quiescent state again. At time $t=0$ the general cell C_{1} is in fire-when-ready state that is an initiation signal to the array. The firing squad synchronization problem $[1,5,11]$ is stated as follows: Given an array of n identical cellular automata, including a general on the left end cell which is activated at time $t=0$, we want to give the description (state set and next-state function) of the automata so that, at some future time, all the cells will simultaneously and, for the first time, enter a special firing state. The set of states and the next-state function must be independent of n. The tricky part of the problem is that the same kind of soldier with a fixed number of states is required to synchronize, regardless of the length n of the array.

3. Waksman's Optimum-Time Algorithm

3.1. Outline of Waksman's Algorithm

Waksman's algorithm is constructed on the conventional $\mathrm{O}(1)$-bit communication CA, and it can synchronize any cellular array consisting of n cells at exactly $2 n-2$ steps. Figure 2 shows its timespace diagram for the synchronization. At time $t=0$, a general G_{0}, located at C_{1}, generates an a signal and $k-1 \mathrm{~b}_{k^{-}}$ signals, where $2 \leq$ $k \leq\left\lceil\log _{2} n\right\rceil-1$. The a-signal propa-

Figure 2: Time-space diagram for Waksman's synchronization algorithm. gates right at the sloop of $\frac{1}{1}$ (one cell per step). The b_{k}-signal propagates in the right direction at the sloop of $\frac{1}{2^{k}-1}$ (one cell per $2^{k}-1$ step). The a-signal reaches C_{n} at $t=n-1$, and generates G_{1} there and then it reflects and proceeds in the left direction at the same speed. The reflected signal meets b_{2}-signal, b_{3}-signal, ..., b_{k}-signal, and generates $k-1$ generals $\mathrm{G}_{2}, \mathrm{G}_{3}, \ldots, \mathrm{G}_{k}$ at each crossing point, respectively. Let S be any cellular space and $|S|$ be size of S. Let S_{0} be the initial cellular space consisting of n cells and S_{i} be a cellular space betwen G_{i+1} and G_{i}. The general G_{i} is responsible for synchronizing S_{i} for any i such that $1 \leq i \leq k$.

3.2. Generation of Generals

G_{i} is generated at the position which divides exactly $\left|S_{i-2}\right|$. Therefore the parity of $\left|S_{i-2}\right|$ is an important factor for generating G_{i}. If the parity of $\left|S_{i-2}\right|$ is an odd number, G_{i} consists of a cell. And if the parity of $\left|S_{i-2}\right|$ is an even number, G_{i} consists of two cells. This parity information is determined by the cell on G_{i-1}, and it is transmitted to the cell of G_{i} by the a-signal. The signal can mark the general state G_{i} on the cell. Figure 2 is a time-space diagram for generating G_{2} in case of that n is an even number. G_{2} is on C_{m}, and consists of two cells. One of the cells includes the left part of the cellular array that is denoted $\mathrm{C}_{1} \mathrm{C}_{m}$, and another includes the right part of the cellular array that is denoted $\mathrm{C}_{m+1} \mathrm{C}_{n}$. In this case, G_{2} of the right part is generated at $t=\frac{3 n-4}{2}$, and G_{2} of the left part is generated at $t=\frac{3 n-2}{2}$. Therefore the right part has been synchronized earlier than the left part. In this case, Waksman' solution is that the right part starts to synchronize with delayed 1 step. The technique is referred to as delaying. In the case that the parity of $\left|S_{i-1}\right|$ is an even number, G_{i} uses the delaying. When the parity of $\left|S_{i-1}\right|$ is an odd number, G_{i} doesn't use it.

4. Time-Optimum Firing Squad Synchronization Algorithm on $\mathbf{C A}_{1-\text { bit }}$

We design a firing squad synchronization algorithm on CA1-bit based on Waksman's algorithm.

4.1. Generation of infinite signals

The key idea is the following construction of an infinite set of 1-bit signals which propagate at $\frac{1}{2^{k+1}-1}-$ speed in one-way direction on a CA1-bit.
[Lemma 1] There exists a CA1-bit that can generate an infinite set of signals which are used efficiently in Waksman's algorithm [11]. Precisely, for any $n \geq 2$, the initial left-end General G generates k signals w_{1}, $\mathrm{w}_{2}, \ldots, \mathrm{w}_{k}$ propagating at speed $1 /\left(2^{k+1}-1\right)$ on n cells, where $k=\left\lfloor\log _{2}(2 n-2)\right\rfloor-1$.

We need two bits that constitute the parity of $\left|S_{i-2}\right|$ and $\left|\mathrm{S}_{i-1}\right|$ so that we can generate G_{i} on right cell in real time. On the CA1-bit, both two bits can't be carried on a single 1-bit a-signal. Thus we have to develop a new technique for the real-time generation of generals.

4.2. Parity of $\left|\mathbf{S}_{i-2}\right|$

A a-signal, which propagates from G_{i} to G_{i+1}, defines $\mathrm{a}_{\mathrm{G}_{i}}$-signal. The $\mathrm{a}_{\mathrm{G}_{i}}$-signal communicates a 1-bit information that is the parity of $\left|\mathrm{S}_{i-1}\right|$. This information is determined on G_{i}, so that $\mathrm{a}_{\mathrm{G}_{i}}$-signal on CA 1 -bit can't communicate it like one on CA. And this information isn't communicated by $\mathrm{a}_{\mathrm{G}_{i}}$-signal, but it is

Figure 3: Generation of G_{3}.

Figure 4: Relation of a-signal and b_{2}-signal
determined by the cell on which G_{i+1} is generated. Therefore a-signal can't include this information. we need to find an other technique.
Here, we have found a rule, when G_{i} is generated by the crossing of b_{i}-signal and a-signal. Figure 3 shows all cases in which G_{3} is generated on C_{7}. In this figure, n means $\left|\mathrm{S}_{0}\right| . \mathrm{G}_{3}$ is generated by the crossing of b_{3}-signal and a-signal. We have investigated a parity of a cell on which G_{2}, which has been the previous gerenal, has been located. As a result, when G_{2} has been located at odd-numbered cell, which had been counted from G_{0}, G_{3} has always consisted of only one cell. And when G_{2} has been located at even-numbered cell, which had been counted from $\mathrm{G}_{0}, \mathrm{G}_{3}$ has always consisted of two cells. And the parity of a cell, on which G_{2} stays, is equal to the parity of $\left|S_{1}\right|$. If based on $G_{3},\left|S_{1}\right|$ becomes $\left|S_{i-2}\right|$.

Next, we must investigate how to get the parity of $\left|S_{i-2}\right|$ at C_{7}. The b_{3}-signal stays on C_{7} between 7 steps. In this figure, a horizontal line is pulled to a half time of b_{3}-signal full staying time. If the crossing happens before the half time, G_{2} always positioned at odd-number cell. And if the crossing happens after the half time, G_{2} always positioned at even-number cell.

The b_{i}-signal stays on $\mathrm{C}_{m_{i}}$ from $t=\left(2^{i}-1\right) m_{i}-2^{i}$ through $t=\left(2^{i}-1\right) m_{i}-2$. We define α_{i}, however
$1 \leq \alpha_{i} \leq 2^{i}-1$ as a variable that means the offset time. We can express the staying time of b_{i}-signal by using this equation.

$$
\begin{equation*}
t=\left(2^{i}-1\right) m_{i}-2^{i}-1+\alpha_{i} \tag{1}
\end{equation*}
$$

And, a-signal, which crosses b_{i}-signal on $\mathrm{C}_{m_{i}}$, arrives at $\mathrm{C}_{m_{i}+1}$ at time $=t$, where t is expressed by the following equation.

$$
\begin{equation*}
t=-m_{i}+2 n-2 \tag{2}
\end{equation*}
$$

From equations (1) and (2) we get:

$$
\begin{array}{r}
2^{i} m_{i}=2 n+2^{i}-1-\alpha_{i} \tag{3}\\
1 \leq \alpha_{i} \leq 2^{i}-1
\end{array}
$$

m_{i} is always an integer that leads to the equation(3), because α_{i} must be an odd number. When α_{i} is an even number, b_{i}-signal doesn't cross the a-signal on $\mathrm{C}_{m_{i}}$. In addition, we are also examined that the crossings of b_{i-1}-signal and a-signal on $\mathrm{C}_{m_{i-1}}$. We can also express m_{i-1} by this equation such that:

$$
\begin{array}{r}
2^{i-1} m_{i-1}=2 n+2^{i-1}-1-\alpha_{i-1}, \tag{4}\\
1 \leq \alpha_{i-1} \leq 2^{i-1}-1
\end{array}
$$

Then we have equation(5).

$$
2^{i} \cdot m_{i}-2^{i-1} \cdot m_{i-1}=2^{i}-2^{i-1}-\alpha_{i}+\alpha_{i-1}(5)
$$

In this case, α_{i} and α_{i-1} are expressed as follows.
(i)If $\mathrm{C}_{m_{i-1}}$ is located on odd-number cell,

$$
\begin{equation*}
\alpha_{i}=\alpha_{i-1} \tag{6}
\end{equation*}
$$

(ii)If $\mathrm{C}_{m_{i-1}}$ is located on even-number cell,

$$
\begin{equation*}
\alpha_{i}=\alpha_{i-1}+2^{i-1} \tag{7}
\end{equation*}
$$

Therefore we get equations (8) and (9).
When m_{i-1} is an odd number,

$$
\begin{equation*}
m_{i}=\frac{m_{i-1}+1}{2} \tag{8}
\end{equation*}
$$

And when m_{i-1} is an even number,

$$
\begin{equation*}
m_{i}=\frac{m_{i-1}}{2} \tag{9}
\end{equation*}
$$

The b_{i}-signal on CA 1 -bit needs a trigger signal that will arrive after a half time of b_{i}-signal full staying time. Thus we have:
[Lemma 2] There exist a 1-bit signal that can determine the parity of $\left|\mathrm{S}_{i-2}\right|$ in time.

4.3. Parity of $\left|\mathbf{S}_{i-1}\right|$

The $\mathrm{a}_{\mathrm{G}_{i}}$-signal counts the parity of $\left|\mathrm{S}_{i}\right|$ from G_{i} to G_{i+1}. The $\mathrm{a}_{\mathrm{G}_{i}}$-signal on CA1-bit can't count it. And this information is also determined by the cell on which G_{i+1} is generated. Therefore a-signal can't also include this information. we need to find an other technique. G_{i} stays on the center of S_{i-2}. Here we define $\mathrm{C}_{1} \mathrm{C}_{\mathrm{G}_{i}}$, which is the left part of S_{i-2}. Because $\mathrm{C}_{1} \mathrm{C}_{\mathrm{G}_{i}}$ is the same size as S_{i-1}, we can get the parity of $\left|S_{i-1}\right|$ at $\mathrm{C}_{\mathrm{G}_{i}}$, when G_{i} is generated. Figure 4 shows a propagation of the a-signal and the b_{i}-signal in Waksman's algorithm. In this figure, we focus an offset time after a-signal passes until b_{2}-signal arrives. On any C_{m}, where m is a positive integer and it is bigger than 1 , the offset time can lead to this equation.

$$
\begin{equation*}
\Delta t=2 p-3 \tag{10}
\end{equation*}
$$

In this case, we define Δt that is the remainder which divided the offset time by 4 , If $p=2 x$,

$$
\begin{equation*}
\Delta t \bmod 4=4 x-3=4(x-1)+1 \tag{11}
\end{equation*}
$$

If $\quad p=2 x+1$,

$$
\begin{equation*}
\Delta t \bmod 4=4 x-1=4(x-1)+3 \tag{12}
\end{equation*}
$$

[Lemma 3] There exist 1-bit signals that can determine the parity of $\left|S_{i-1}\right|$.

Based on lemmas above, our main theorem is stated as follows:
[Theorem 4] There exists a CA1-bit which can synchronize any n cells in $2 n-2$ steps. A CA1-bit implemented has 78 internal states and 208 transition rules.

In Fig. 5 we show snapshots of the synchronization processes. Small right and left black triangles, shown - and $\boldsymbol{\iota}$ in the figure, indicate a 1-bit transfer in the right or left direction between neighboring cells. A symbol in a cell shows its internal state.

5. Conclusion

We have designed and implemented an optimumtime firing squad synchronization algorithm on CA_{1} bit. Each cell has 78 internal states and 208 transition rules, and we checked its validity from $n=2$ through $n=10000$ by computer simulation.

References

[1] R. Balzer: An 8-state minimal time solution to the firing squad synchronization problem. Information and Control, vol. 10 (1967), pp. 22-42.
[2] J. Mazoyer: A minimal time solution to the firing squad synchronization problem with only one bit of information exchanged. Technical report of Ecole Normale Superieure de Lyon, no. 89-03, April, (1989), p.51.
[3] J. Mazoyer: On optimal solutions to the firing squad synchronization problem. Theoretical Computer Science, vol. 168 (1996), pp. 367-404.

Figure 5: Snapshots of our time-optimum synchronization on $\mathrm{CA}_{1 \text {-bit }}$ consisting of 25 cells.
[4] K. Michisaka, H. Yahara, N. Kamikawa and H. Umeo: A generalization of 1-bit-communication firing squad synchronization algorithm. Proc. of The 15th Annual Conference of Japanese Society for Artificial Intelligence, 2C3-06, (2001), pp.1-4.
[5] E. F. Moore: The firing squad synchronization problem. in Sequential Machines, Selected Papers (E. F. Moore, ed.), Addison-Wesley, Reading MA., (1964), pp. 213-214.
[6] J. Nishimura, T. Sogabe and H. Umeo: A design of optimumtime firing squad synchronization algorithm on 1-bit cellular automaton. Technical Report of IPSJ, vol. 32-12 (2000), pp. 41-44.
[7] J. Nishimura, T. Sogabe and H. Umeo: A Realization of Optimum-Time Firing Squad Synchronization Algorithm on 1Bit Cellular Automaton. Technical Report of IPSJ, vol. 87-8 (2002), pp. 59-66.
[8] H. Umeo, J. Nishimura and T. Sogabe: 1-bit inter-cell communication cellular algorithms (invited lecture). Proc. of the Tenth Intern. Colloquium on Differential Equations, held in Plovdiv in 1999, International Journal of Differential Equations and Applications, vol. 1A, no. 4 (2000), pp. 433-446.
[9] H. Umeo: Cellular Algorithms with 1-Bit Inter-Cell Communications. Proc. of MFCS'98 Satellite Workshop on Cellular Automata(Eds. T. Worsch and R. Vollmar), Interner Bericht 19/98, University of Karlsruhe, (1998), pp.93-104.
[10] H. Umeo, T. Sogabe and Y. Nomura: Correction, optimization and verification of transition rule set for Waksman's firing squad synchronization algorithm. Proc. of the Fourth Intern. Conference on Cellular Automata for Research and Industry, Springer, (2000), pp. 152-160.
[11] A. Waksman: An optimum solution to the firing squad synchronization problem. Information and Control, vol. 9 (1966), pp. 66-78.

