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Abstract—In this paper, we discuss the limiting behav-
ior of the search direction of the steepest descent method in
minimizing general nonlinear function. It is well known
that the search direction of the steepest descent method
asymptotically alternates between two fixed directions if
the given function is a quadratic form. Moreover, it is
conjectured that the property holds for non-quadratic func-
tions. However, we find that some non-quadratic functions
do not take zig-zag directions. Also, we give some neces-
sary conditions to cause the special cases.

1. Introduction

In the optimization problems for smooth functions, var-
ious kinds of descent methods are frequently used. The
steepest descent method is the simplest and the most clas-
sical of these descent methods. Since this method involves
the use of a gradient vector, it is also a fundamental of all
descent methods. Thus it is important to study its proper-
ties. For example, it is well known that the search direc-
tion of the steepest descent method in minimizing a pos-
itive definite quadratic form asymptotically alternates be-
tween two fixed directions [1, 2, 3, 4]. Figure 1 shows that
the direction of the steepest decent method behaves zig-
zag for quadratic form with two variable. This property
was conjectured by Forsythe and Motzkin [1] and proved
by Akaike [2]. Forsythe further conjectured that the same
property holds for general nonlinear function. The reason
is that smooth and real-valued functions can be approxi-
mated to a certain positive definite quadratic form in the
neighborhood of its local minimum by applying Taylor’s
expansion [5]. Therefore we can expect that the same phe-
nomenon will be observed for non-quadratic form. How-
ever, we find that some non-quadratic functions do not have
the same behavior and the direction of the steepest descent
method do not move zig-zag. Moreover, we give some nec-
essary conditions to cause the special cases.

2. Algorithm of the Steepest Descent Method

Let f (x) be real for all x in Euclidean n-space Rn and
twice continuous differentiable. In other words, the func-
tion belongs to C2. Also, let f (x) take a minimum value.
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Figure 1: Behavior of the Steepest Descent Method.

The algorithm of the steepest descent method is given as
follows.

Algorithm of the steepest descent method

1. Let x0 be an initial vector and put k = 0.

2. The search direction is determined by the steepest de-
cent direction −∇ f (xk). The step size αk is given by
the smallest positive number which satisfies the next
equation:

∂ f (xk − α∇ f (xk))
∂α

= 0. (1)

That is, the step size takes Curry’s rule [4]. The next
approximation vector is represented by

xk+1 = xk − αk∇ f (xk). (2)

3. Evaluate a convergent condition. If the condition is
not satisfied, increase k and return to the second step.

3. Behavior of the Steepest Descent Method

In this section, we shall discuss the limiting behavior of
the search direction of the steepest descent method for gen-
eral functions. To simplify the discussion, we assume that
the function f (x) takes a minimum 0 at the origin 0 and the
Hessian matrix ∇2 f (0) is diagonal by using a coordinate
transformation. Then, the matrix ∇2 f (0) becomes positive.
Without loss of generality, we can discuss the behavior of
the steepest descent method under these assumptions.
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Definition 1 Let dk be a normalized vector of the search
direction −∇ f (xk):

dk = − ∇ f (xk)
‖∇ f (xk)‖ . (3)

The following orthogonal theorem is well known as a
essential property of the steepest descent method [3, 4]．

Theorem 1 Two successive search directions are mutually
orthogonal. That is, it holds (dk, dk+1) = 0.

Next, we introduce a symmetric matrix Ak with the size
n × n as follows:

Ak
�
=

∫ 1

0
∇2 f (txk+1 + (1 − t)xk)dt. (4)

If approximation xk converges to the origin 0, the matrix
Ak becomes positive for sufficient large k because Ak con-
verges to a positive matrix ∇2 f (0). From

∇ f (xk+1) = ∇ f (xk) + Ak(xk+1 − xk)

= ∇ f (xk) − αkAk∇ f (xk), (5)

and Theorem 1, by multiplying ∇ f (x k) to both sides (5),
we get

α−1
k =

(Ak∇ f (xk),∇ f (xk))
‖∇ f (xk)‖2

= (Akdk, dk). (6)

We define a mean by

µ(dk)
�
= α−1

k = (Akdk, dk) (7)

and a variance Vk by

Vk
�
= ‖Akdk − µ(dk)dk‖2. (8)

If the given function f (x) is a quadratic form, A k is a con-

stant matrix A
�
= ∇2 f (0). Akaike treated eigenvalues of a

positive matrix A as probability values. Then, he consid-
ered the set of squares of components of the search vec-
tor dk corresponding to eigenvectors of the matrix A as a
probability distribution. Then, µ(d k) becomes a mean and
Vk becomes a variance. Moreover, he showed the variance
increases monotonically and converges to a non-zero num-
ber. By using this property, he analyzed the behavior of
the search direction [2]. So, we extended this idea to non-
quadratic function and examine the variance V k. However,
in the case of non-quadratic function, each eigenvalue of
the matrix Ak (sometimes even each eigenvector) changes
with k and the variance Vk does not increase monotonically.
Nevertheless, we got a next important lemma [7].

Lemma 1 If ∇2 f (x) has Lipschitz continuity in the neigh-
borhood of 0, the variance Vk converges a nonnegative
number.

From now on, we assume Lipschitz continuity of ∇2 f (x).
Of course, if f (x) belongs to C 3, this assumption is auto-
matically satisfied.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

x0

x1

x2

y = 1
2 x

y = − 1
2 x

�
�

�
�

����
��

Figure 2: Behavior in the case of quadratic form.

3.1. In the case of positive variance

If the variance Vk converges to a positive number, we got
a next result [7]. This theorem is an extension of Akaike
theorem [2] to non-quadratic function .

Theorem 2 Let assume the variance Vk converges to a
positive number.

1. The search direction dk can be asymptotically approx-
imated by a linear combination of two eigenvectors of
the matrix ∇2 f (0).

2. The direction dk asymptotically alternates between
two vectors that are mutually orthogonal.

Figure 2 shows the behavior of the steepest descent
method in minimizing quadratic form f (x, y) = 1

2 x2 + y2

started from x0 = (1,0.5). In this case, approximation
xk moves between two lines. On the other hand, Figure 3
shows the behavior of the steepest descent method in mini-
mizing non-quadratic form f (x, y) = 1

2 x2 + 1
3 x3 + y2 started

from x0 = (−1+
√

5
2 , 0.5). In this case, approximation xk

moves between two curved lines. Whether quadratic form
or not, the search direction moves zig-zag at right angles.

Next, we give a sufficient condition in which the variance
converges to a positive number.

Definition 2 We call a function f (x) is separable if the
Hessian matrix ∇2 f (x) is diagonal.

Example 1 Let the function f (x, y) be as follows:

f (x, y) =
1
2

x2 + y2 + x3. (9)
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Figure 3: Behavior in the case of non-quadratic form.

Then, we get the Hessian matrix

∇2 f (x, y) =

(
1 + 6x 0

0 2

)
. (10)

Therefore, this function is separable. On the other hand,
the function

f (x, y) =
1
2

x2 + y2 + x2y (11)

is not separable. Because the Hessian matrix

∇2 f (x, y) =

(
1 + 2y 2x

2x 2

)
(12)

is not diagonal. Of course, quadratic form is obviously sep-
arable.

The following theorem give a sufficient condition in
which the variance Vk converges to a positive number.

Theorem 3 Let suppose that the steepest descent method
does not converge by finite iterations. If the function f (x)
is separable, the variance does not converge to zero. There-
fore, it holds theorem 2.

3.2. In the case of zero variance

When the variance Vk converges to zero, the direction
does not always behave zig-zag. In this subsection, we
shall examine the special case. If the variance Vk con-
verges to zero, from (8), all accumulation points r α of the
sequence {dk} must satisfy the equation

‖Arα − µ(rα)rα)‖ = 0. (13)

Therefore, the search vector dk must accumulate to eigen-
vectors of the matrix A = ∇2 f (0). This is a first necessary

condition in which the direction does not behave zig-zag.
This depends on how we take an initial vector x0. Next,
from Theorem 3, we also need that the function is not sep-
arable. Now, we give a simple example to satisfy these
necessary conditions.
Example 2 Let the function f (x, y) be as follows:

f (x, y) =
1
2

x2 + y2 + x3y − xy3. (14)

Then, we get the Hessian matrix

∇2 f (x, y) =

(
1 + 6xy 3(x2 − y2)

3(x2 − y2) 2 − 6xy

)
. (15)

Therefore, this function is not separable. Since the vector
dk is in two dimensional space R2, if dk is an eigenvector
of the matrix A = ∇2 f (0, 0), the next direction d k+1 also
become an eigenvector. Therefore, every search direction
dk is always an eigenvector. From

∇ f (x, y) =

(
x + 3x2y − y3

2y + x3 − 3xy2

)
, (16)

if we put an initial approximation x0 = (1,− 1
3 ), this point

satisfies 2y − 3xy2 + x3 = 0. Therefore, every search direc-
tion dk is an eigenvector of the matrix

∇2 f (0, 0) =

(
1 0
0 2

)
. (17)

Hence, it holds

lim
k→∞

Vk = lim
k→∞
−(Akdk, dk+1)

= lim
k→∞
−(Adk, dk+1) = 0. (18)

We confirmed that the variance Vk converges to zero. More-
over, it holds dk+2 = −dk. Consequently, the direction dk

takes one of four vectors

(−1, 0), (0, 1), (1, 0), (0,−1)

cyclically and the sequence {xk} converges to the origin spi-
rally (See Figure 4). This case is never seen in quadratic
form. However, the search direction does not always be-
have non zig-zag even if the variance converges to zero and
the search direction accumulates eigenvectors. For exam-
ple, put non-separable function

f (x, y) =
1
2

x2 +
3
2

y2 + x2y + xy2 (19)

and an initial vector x0 = (− 1
2 ,− 1

8 ). Although every search
direction is an eigenvector of the matrix ∇2 f (0, 0), it alter-
nates only two directions and the approximation x k moves
zig-zag (See Figure 5). In both examples, the approxima-
tion xk moves between two curved lines. How two curved
lines curve each other is important.

Finally, we give a theorem about the order of conver-
gence.
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Figure 4: Search directions move four directions cyclically.

Theorem 4 If the variable Vk converges to zero, the order
of convergence is super linear.

Usually, the steepest descent method converges lineally be-
cause the search direction take an eigenvector infrequently.

4. Conclusions

We discussed the limiting behavior of the search direc-
tion of the steepest descent method in minimizing nonlin-
ear function. Unlike in the case of quadratic form, the Hes-
sian matrix changes at each iteration. By the same way
that Akaike treated quadratic form, we also analyzed the
variance of the search direction corresponding to the Hes-
sian matrix. If the variance converges to a positive number,
the search direction asymptotically alternates between two
vectors. This is the same behavior with quadratic form.
However, we found the existence of a special case that the
variance converges to zero and the direction takes one of
four directions cyclically. This case never seen in quadratic
form. However, this is a simple counter-example with two
variable. Are there any counter-examples with more than
three variable? This problem is not solved.
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