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Abstract—A new verification method is proposed
for calculating the guaranteed error bounds of the ap-
proximate eigenvalues of real symmetric matrix with-
out directed rounding. In this method, the guaran-
teed error bounds of the approximate eigenvalues are
computed only in rounding-to-nearest mode. And this
paper includes some numerical examples to show the
property of the new method.

1. Introduction
In this paper, we consider calculating guaranteed

error bounds of approximate eigenvalues for

Ax = λx (1)

where A is an n × n real symmetric matrix and λ
is an eigenvalue and x is an eigenvector correspond-
ing to λ. To calculate the guaranteed error bounds
of the approximate eigenvalues, Oishi [1] modified the
Weyl’s theorem (e.g. [2][3]) suited for numerical inclu-
sion of matrix eigenvalues. By this modification, for
true eigenvalues λi (i = 1, · · · , n), it holds that

|λi − λ̃i| ≤ |λ̃i|||PP
T − I||2 + ||PDP

T −A||2 (2)

where λ̃i are computed (approximate) eigenvalues and
P is an approximately orthogonal matrix whose col-
umn vectors are corresponding approximate eigenvec-
tors and D is a diagonal matrix whose diagonal ele-
ments are approximate eigenvalues of A. Oishi pro-
posed a fast verification method for calculating the
guaranteed error bounds of the approximate eigenval-
ues with directed rounding introducing the rounding
mode instructions defined by IEEE 754 standard for
floating point arithmetic [4].

The purpose of this paper is to propose a new veri-
fication method for calculating the guaranteed error
bounds of the approximate eigenvalues without di-
rected rounding. In this method, the guaranteed error
bounds of the approximate eigenvalues are computed
only in rounding-to-nearest mode. By applying the
new verification method, the guaranteed error bounds
for the approximate eigenvalues of real symmetric ma-
trix are calculated no matter though the working envi-

ronment does not support the rounding mode instruc-
tions (e.g. Java and FORTRAN 77). Finally, this
paper includes some numerical examples to show the
property of the new method.

2. Floating Point Arithmetic
We assume that floating point arithmetic in this pa-

per adheres to IEEE 754 standard. Let IF be the set
of floating point numbers. Let fl(·) be the result of a
floating point computation, where all operations inside
parentheses are executed by ordinary floating point
arithmetic. We assume that over/underflow do not
occur. For a, b ∈ IF and ◦ ∈ {+,−, ·, /}, floating point
operations according to IEEE 754 satisfy

|a ◦ b| ≤ (1 + u) · |fl(a ◦ b)| (3)

for u denoting the unit roundoff. Here, we cite the
following definitions:
Definition 1 Let u be the unit roundoff (especially,
u = 2−53 in IEEE 754 double precision). Then, the
constants γ

m,n
and γ̃

m,n
for m,n ∈ IN are defined as

follows:

γ
m,n

:=
mu

1− nu
, γ̃m,n := fl(

mu
1− nu

) . (4)

To simplify the description, when m = n, we define γ
n

and γ̃
n

as follows:

γ
n

:= γ
n,n

, γ̃
n

:= γ̃
n,n

. (5)

For p ∈ IN and a ∈ IF, we present fundamental prop-
erties with u utilizing a priori error estimation (see
[5]).

(1 + u)n ≤ 1
1− nu

= 1 + γn (6)

γm,n(1 + u)p ≤ γm,n+p (7)

(1 + u)n|a| ≤ 1
1− nu

|a| ≤ fl(
|a|

1− (n + 1)u
) (8)

γ
m,n
|a| ≤ fl(γ̃

m,n+2 |a|) (9)

Next, we cite the following definitions:

2004 International Symposium on Nonlinear
Theory and its Applications (NOLTA2004)

Fukuoka, Japan, Nov. 29 - Dec. 3, 2004

167



Definition 2 For x ∈ IFn and A ∈ IFn×n , a norm
|| · ||∞ is defined as follows:

||x||∞ = max
1≤i≤n

|xi|, ||A||∞ = max
1≤i≤n

(
n∑

j=1

|xij |) . (10)

We present properties of vector and matrix operations
between real arithmetic and floating point arithmetic
(see [5]). For x, y ∈ IFn,

||x||∞ = fl(||x||∞) (11)
n∑

i=1

|xi| ≤ (1 + u)n−1 · fl(
n∑

i=1

|xi|) (12)

|xT ||y| ≤ (1 + u)n · fl(|xT ||y|) (13)

|fl(x
T

y)− x
T

y| ≤ γn |x
T ||y| . (14)

For an vector e = (1, · · · , 1)T ,

|xT |e =
n∑

i=1

|xi| ≤ (1 + u)n−1 · fl(|xT |e) . (15)

For A ∈ IFn×n,

||A||∞ ≤ (1 + u)n−1 · fl(||A||∞) . (16)

From Eq. (14), we obtain

|xT

y| ≤ |fl(x
T

y)|+ γ
n
|xT ||y| . (17)

Let p and s be natural numbers for which u = 2−p and
s = dp/2e hold (in IEEE 754 double precision, p = 53
and s = 27). Introducing s, Dekker [6] proposed the
algorithm “Split” which splits a floating point number
a ∈ IF into two parts x and y where both parts have at
most s − 1 nonzero bits. Introducing this algorithm,
Veltkamp (see [6]) proposed the algorithm “TwoProd-
uct” which transform the product ab (a, b ∈ IF) into
x, y ∈ IF. And this algorithm is able to be expanded
into the following algorithm (throughout this paper,
we express algorithms MATLAB-like [7]):
Algorithm 1 Calculation of x, y ∈ IFn such that
αv = x + y, (α ∈ IF, v ∈ IFn) without error.
function [x, y] = TwoProductSV(α, v)
x = fl(α ∗ v);
[α1, α2] = Split(α); % α = α1 + α2

[v1, v2] = Split(v); % v = v1 + v2

y = fl(α2v2 − (((x− α1v1)− α2v1)− α1v2));

Introducing Algorithm 1, the following algorithm
transform the product PD (P, D ∈ IFn×n) into two
matrices G,H ∈ IFn×n where D is a diagonal matrix.

Algorithm 2 Calculation of G,H ∈ IFn×n such that
PD = G + H, (P, D ∈ IFn×n) where D is a diagonal
matrix.
function [G,H] = MatProduct(P, D)
for i=1:n

[G(:, i),H(:, i)] = TwoProductSV(D(i, i), P (:, i));
end

3. New Verification Method
In this section, we propose a new verification

method for calculating the guaranteed error bounds of
the approximate eigenvalues without directed round-
ing. Here, inequality for vectors means that the in-
equality holds for all components. Inequality for ma-
trices means similarly. At first, we note a well-known
fact that for any n× n real symmetric matrix A,

||A||2 ≤ ||A||∞ (18)

holds. Therefore we are able to modify (2) as follows:

|λi − λ̃i| ≤ |λ̃i|||PP
T − I||∞ + ||PDP

T −A||∞ (19)

From (17), it holds that

|PP
T − I| ≤ fl(|PP

T − I|) + γn+1(|P ||P
T |+ I) . (20)

From this, we obtain

||PP
T − I||∞ ≤ ||fl(PP

T − I)||∞
+γn+1 |||P ||P

T |||∞ + γ
n+1 .(21)

And from (15),

|P T |e ≤ (1 + u)n−1 · fl(|P T |e) (22)

for e = (1, · · · , 1)T and by (13),

|P ||P T |e ≤ (1 + u)n−1(1 + u)n · fl(|P |(|P T |e))
= (1 + u)2n−1 · fl(|P |(|P T |e)) . (23)

From this, we obtain

|||P ||P T |||∞ = |||P |(|P T |e)||∞
≤ (1+u)2n−1||fl(|P |(|P T |e)))||∞ .(24)

Therefore, from (11) we obtain

|||P ||P T |||∞ ≤ (1 + u)2n−1fl(|||P |(|P T |e)||∞) . (25)

Moreover, from (16), we obtain

||fl(PP
T − I)||∞ ≤ (1 + u)n−1fl(||PP

T − I||∞) . (26)

We define

α1 := fl(||PP
T − I||∞)

α2 := fl(|||P |(|P T |e)||∞) . (27)

Inserting (25) and (26) into (21) and utilizing (6) and
(7), we obtain

||PP
T − I||∞ ≤ (1 + γ

n−1)α1 + γ
n+1,3n

α2 + γ
n+1 . (28)

By applying Algorithm 2, we are able to modify
PDP

T −A as follows:

PDP
T −A = (G + H)P

T −A

= GP
T −A + HP

T

. (29)
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Therefore,

||PDP
T −A||∞ = ||GP

T −A + HP
T ||∞

≤ ||GP
T −A||∞ + ||HP

T ||∞.(30)

Similar to (24) and utilizing (6), it holds that

||HP
T ||∞ ≤ |||H||P T |||∞

≤ (1 + γ2n−1)fl(|||H|(|P T |e)||∞).(31)

We define

α3 := fl(|||H|(|P T |e)||∞) . (32)

Inserting α3 into (31), we obtain

||HP
T ||∞ ≤ (1 + γ2n−1)α3 . (33)

On the other hand, similar to (20), it holds that

|GP
T −A| ≤ fl(|GP

T −A|) + γ
n+1(|G||P

T |+ |A|). (34)

Therefore, similar to (24) and utilizing (6), (7) and
(11), we obtain

||GP
T −A||∞ ≤ ||fl(|GP

T −A|)||∞
+γ

n+1 |||G||P
T |+ |A|||∞

≤ (1 + γ
n−1)fl(||GP

T −A||∞)

+γn+1,3nfl(|||G|(|P T |e)||∞)
+γn+1,2nfl(||A||∞) . (35)

We define

α4 := fl(||GP
T −A||∞)

α5 := fl(|||G|(|P T |e)||∞)
α6 := fl(||A||∞) . (36)

Inserting α4, α5 and α6 into the (35), we obtain

||GP
T −A||∞ ≤ (1 + γ

n−1)α4

+γ
n+1,3n

α5 + γ
n+1,2n

α6 . (37)

Inserting (33) and (37) into the Eq, (30), we obtain

||PDP
T −A||∞ ≤ (1 + γ2n−1)α3 + (1 + γ

n−1)α4

+γ
n+1,3n

α5 + γ
n+1,2n

α6 . (38)

Inserting (28) and (38) into (19) and utilizing (3) and
(7), we obtain

|λi − λ̃i| ≤ (1 + u)(fl(|λ̃i|α1) + fl(α3 + α4))
+γn−1 |λ̃i|α1 + γn+1,3n |λ̃i|α2 + γn+1 |λ̃i|
+γ2n−1,2nfl(α3 + α4)
+γn+1,3nα5 + γn+1,2nα6 . (39)

We define

α7 := fl(α3 + α4) . (40)

Inserting α7 into (39) and utilizing (7), we obtain

|λi − λ̃i| ≤ (1 + u)2fl((|λ̃i|α1) + α7) + γ
n−1 |λ̃i|α1

+γn+1,3n |λ̃i|α2 + γn+1 |λ̃i|+ γn+1,3nα5

+γ2n−1,2n+1fl(α6 + α7) . (41)

We define

α8 := fl(α6 + α7) . (42)

Inserting α8 into (41) and utilizing (3), (7), (8) and
(9), we obtain

|λi − λ̃i| ≤ fl((((|λ̃i|α1) + α7)
+γ̃2n−1,3n+6((|λ̃i|(α1 + α2 + 1))
+(α5 + α8)))/(1− 4u)) . (43)

From these, we obtain the following theorem:

Theorem 1

|λi − λ̃i| ≤ fl((((|λ̃i|α1) + α7)
+γ̃2n−1,3n+6((|λ̃i|(α1 + α2 + 1))
+α9))/(1− 4u)) (44)

where α1, α2, α7 and α9 are defined by

α1 := fl(||PP
T − I||∞)

α2 := fl(|||P |(|P T |e)||∞)

α7 := fl(|||H|(|P T |e)||∞ + ||GP
T −A||∞)

α9 := fl(|||G|(|P T |e)||∞ + (||A||∞ + α7)) . (45)

Utilizing Theorem 1, we are able to present an algo-
rithm for calculating upper bounds on |λi − λ̃i| ap-
plying only ordinary floating point arithmetic with
rounding-to-nearest.

Algorithm 3 Calculatin of vectors d = (λ̃1, · · · , λ̃n)
T

and r = (r1, · · · , rn)
T

such that |λi − λ̃i| ≤ ri (i =
1, · · · , n).
function [d, r] = VeigNear(A)
[P, D] = eig(A);
[G,H] = MatProduct(P, D); %G + H = PD

α1 = fl(||PP
T − I||∞);

α2 = fl(|||P |(|P T |e)||∞);
α7 = fl(|||H|(|P T |e)||∞ + ||GP

T −A||∞);
α9 = fl(|||G|(|P T |e)||∞ + (||A||∞ + α7));
d = diag(D); % di = Dii

d̂ = abs(d); % d̂i = |di|
p = fl(α7 · ones(n, 1)); % p = (α7, · · · , α7)
q = fl(α9 · ones(n, 1)); % q = (α9, · · · , α9)

γ̃ = fl(
(2n− 1)u

1− (3n + 6)u
);

r = fl(
((α1d̂) + p) + γ̃(((α1 + α2 + 1)d̂) + q)

1− 4u
);
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This algorithm requires 4n3 flops while the round-
ing mode controlled algorithm proposed in [1] requires
10n3 flops.

4. Numerical Example
In this section, we show some numerical examples.

Here, we apply IEEE 754 double presicion and our
computer environment is Pentium IV 2.53GHz CPU.
We use MATLAB 6.5.1 for all computations. In this
environment, u is able to be defined as u = 2−53. Let
the vector r1 and r2 be guaranteed componentwise er-
ror bounds of computed (approximate) eigenvalues ap-
plying Algorithm 3 and the rounding mode controlled
algorithm proposed in [1]. In order to show a typi-
cal order of guaranteed bounds of errors, ||r1||∞ and
||r2||∞ are calculated. And let teig, t1 and t2 be the
calculating costs (s) when we calculate approximate
eigenvalues, ||r1||∞ and ||r2||∞.

Table 1 shows teig, t1, t2, ||r1||∞ and ||r2||∞ for a
n× n matrix

A =
B + B

T

2
(46)

where B is an n× n matrix whose entries are pseudo-
random numbers uniformly distributed in [−1, 1].

Table 1: Comparison of the both methods for various
n.

n teig t1 t2 ||r1||∞ ||r2||∞
100 0.016 0.016 0.016 1.05×10−12 3.32×10−11

250 0.176 0.127 0.074 3.65×10−12 3.12×10−10

500 1.903 0.851 0.363 1.12×10−11 1.71×10−9

1000 14.38 5.570 1.914 2.68×10−11 9.45×10−9

1500 34.89 13.14 4.102 3.29×10−11 1.94×10−8

2000 107.8 39.55 12.06 6.08×10−11 5.31×10−8

Let cond(A) be the condition number of A. The
Table 2 shows cond(A), teig, t1, t2, ||r1||∞ and ||r2||∞
for a 1000 × 1000 matrix A = B

T

B where B is an
1000 × 1000 matrix whose entries are pseudo-random
numbers obtained by randsvd utilizing Higham’s test
matrices [8].

Table 2: Comparison of the both methods for various
cond(A).
cond(A) teig t1 t2 ||r1||∞ ||r2||∞
1.0×100 7.406 5.438 1.906 5.35×10−13 2.88×10−10

1.0×102 12.72 5.531 1.922 4.46×10−13 1.82×10−10

1.0×104 10.69 5.594 1.875 3.81×10−13 1.67×10−10

1.0×106 9.656 5.516 1.906 3.43×10−13 1.60×10−10

1.0×108 8.688 5.546 1.875 3.26×10−13 1.56×10−10

1.0×1010 7.969 5.516 1.890 3.09×10−13 1.55×10−10

1.0×1012 6.922 5.563 1.937 2.84×10−13 1.54×10−10

1.0×1014 6.547 5.578 1.891 2.84×10−13 1.54×10−10

By Table1, we are able to confirm that t2 is smaller
than t1 and much smaller than teig. Therefore, Algo-
rithm 3 is faster than the rounding mode controlled al-
gorithm and much faster than the computation of the
approximate eigenvalues. Moreover, ||r2||∞ is larger
than ||r1||∞ but comparable. And by Table 2, we are
able to confirm that ||r1||∞, ||r2||∞, t1 and t2 do not
depend on the condition number.

5. Conclusion
In this paper, a new verification method was pro-

posed for calculating the guaranteed error bounds of
the approximate eigenvalues of real symmetric matrix
without directed rounding. Finally, some numerical
examples were implemented to show the property of
the new method.
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