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Abstract—The phase dynamics (; phase equa-
tion) is analyzed in the interlocked feedback model of
Drosophila circadian systems with weak light input.
From the phase equation, range of entrainment can
be obtained systematically for light-dark cycle inputs,
and for various light input patterns. These theoret-
ical predictions are verified in the simulation results
of entrainment, and explain how the range of entrain-
ment is affected by the input patterns. Based on this
framework, inverse problems on the entrainment char-
acteristics are formulated and some insight is obtained.

1. Introduction

Computer simulations are now essential in analyzing
large-scale and complex systems in science and engi-
neering. Tools like SPICE and NEURON have been
elaborated and widely used. However, data produced
by them does not necessarily lead to total understand-
ing of the system, because the simulation model itself
has become too complex to follow. Such bottleneck
emerges in recent circadian rhythm study where in-
creasing number of clock proteins and mRNAs are in-
volved in molecular-based simulation models.

In this presentation, we introduce a method of phase
reduction to analyze the Drosophila circadian clock
systems and attempt to gain a systematic understand-
ing of entrainment characteristics, suggesting a proto-
col controlling the entrainment characteristics.

2. Interlocked Feedback Model

At molecular level, the Drosophila clock system
involves several genes; period (per), timeless (tim),
Drosophila clock (dClk), Cycle (Cyc) and double time
(dbt), and three genes are rhythmically expressed; per,
tim and dClk. Leloup and Goldbeter [1] proposed a de-
layed negative feedback loop model involving per, tzm
and repressed transcription of per and #im by PER-
TIM complex. This model has stimulated more elab-
orated models involving other genes. At present, the
interlocked feedback model [2, 3] is one of the most so-
phisticated and convincing models. Adding to the per
and ##m rhythmic expression in the model by Leloup
and Goldbeter, the interlocked feedback model ac-
counts for the rhythmic expression of dCik, and also
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Fig.1 Interlocked feedback model of Drosophila cir-
cadian thythm][3].

explains how decrease of per and #im mRNA levels

takes place in mutants lacking PER or TIM function.

Mathematical Model Based on the Inter-
locked Feedback Model

2.1.

Ueda et al [3] formulated a mathematical model
based on the interlocked feedback model, which is
schematized as in Fig. 1. As shown in Fig.1, a per-
tim feedback loop and a dClk feedback loop are in-
teracting by derepressing its own mRNA transcription
with PER-TIM, and repressing with dCLK-CYC re-
spectively. This model defines ten-variable ordinally
differential equations, in which each variable repre-
sents the temporal concentration of the protein or
mRNA. The kinetics of the mRNA transcription and
the protein translation, degradation and nuclear trans-
portation are described with Hill-type equations and
Michaelis-Menten-type equations, respectively. Ki-
netic constants are chosen to yield a 24 hr circadian
period in constant darkness conditions.

2.2. Entrainment by Light Input

To characterize the response of the circadian clock
system to the light input, a PRC (phase resetting
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curve) is often measured experimentally. In the in-
terlocked feedback model as well as the Leloup and
Goldbeter model [1], the effect of light inputs is mod-
eled by the temporal increase of the degradation co-
efficient of TIM (; D4 in [3]). This simple modeling
produces numerically obtained PRCs, showing a nice
fit to the experimental PRCs. In this study we focus
on this model to analyze the effects of various light
inputs systematically, although our analytical method
is amenable to more elaborated models for light input
effects.

3. Phase Dynamics in the Interlocked Feed-
back Model

Mathematically speaking, self-sustained oscillations
in the interlocked feedback loop can be characterized
as a limit cycle in the ten-variable phase space. This
implies that the system dynamics can be reduced to a
natural phase of the oscillations under weak light input
conditions. The reduced dynamics of the phase can
be defined as phase equations, which can be obtained
by solving the adjoint variational equation about the
limit cycle and by using the averaging method [4], in
principle.

3.1. Derivation of Phase Equations

As mentioned above, the derivation of the phase
equation is straightforward, once the limit cycle and
the solution of the adjoint variational equation is ob-
tained. However, in practice, this method (; the ad-
joint eigenfunction method) requires much computa-
tional cost especially for highly nonlinear, large-scale
systems such as the interlocked feedback model. Here,
instead of this straightforward method, we employ an
indirect method deriving the phase equations; the im-
pulse response method [5].

In using, the impulse response method, we first com-
pute the linear response region (LRR), in which the
amount of phase shifts is proportional to the input
strength (; impulse height). In this region, the PRC is
uniquely determined under a certain scaling. Here, we
call this scaled PRC as the impulse sensitivity func-
tion (ISF) per Hajimiri [6]. Examples of the LRR and
PRC in this study are shown in Fig.3 and Fig.4, re-
spectively. Using this ISF, we can obtain the phase
equation of the interlocked feedback model as

do(t) i
3 =wo+ H(O(t) - 6(1)), (1)
with
or [To T(wot + ) N gy — 7
T T Rt +d)di=H(@—6), (2)

where (= wot + ¢) and 9~(: wot + q;) represent the
oscillation phase of Per,, and the light input, respec-
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Fig.2 Phase difference between the circadian rhythm
of Per,, concentration and the light-dark cycle input
intensity.
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Fig.3 Relationship between phase shift and impulse
height. The solid square defines the LRR.

tively. T'(-), R(-), and S represent the PRC, the light
input waveform, and the normalization constant (;
pulse height x width ), respectively. wp is the nat-

ural frequency of the circadian rhythm and wy = %—:

holds.

The phase difference 6 — 6 is defined as in Fig.2 such
that & — 6 becomes 0 when the frequency of the in-
put coincides to the natural frequency of the circadian
rhythm.

3.2. Effect of Input Pattern on the Entrain-
ment Range

Now the entrainment characteristics is reduced to
the function H(-) in Eq. (1). The obtained func-
tions H(-) are shown in Fig. 5, where the waveform
clearly depends on the input waveform. Theoretically
obtained ranges of phase shift are [-7.736, 6.515], [-
6.058, 5.965], and [-6.905, 5.118], for the chopped si-
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Fig.4 Phase shifts with respect to light impulse tim-
ing.
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Fig.5 Entrainment characteristics for three different
photonic inputs (theoretical predictions) .

nusoidal input, sinusoidal input, and rectangular in-
put, respectively. ( In the chopped sinusoidal input,
the maximum is % x 0.03 and the minimum is 0. In
the sinusoidal input, the amplitude is 0.015, the maxi-
mum is 0.03, and the minimum is 0. In the rectangular
input, the maximum is 0.03 and the minimum is 0. )

The entrainment characteristic directly obtained by
the simulations is shown in Fig. 6, where the data
shows a complete agreement to the above theoretical
prediction of the phase shift and range of entrainment.

From the above results, we observe that
(1) the phase equation provides systematic predictions
on the entrainment characteristics of the interlocked
feedback model, and
(ii) the entrainment characteristics shows a clear de-
pendence on the input pattern.

7
i
5
¢ /
3
£ 2
gL
b=
£ 0
;_?3.96 23.98 2400 24.02 04 2406 24.08 2410 2412 2474
[
_3 I /

—— rectangular
4T chopped sinusoidal
-5 F / —+— sinusoidal
_6 I

Period (h)

Fig.6 Entrainment characteristics for three different
photonic inputs (simulation results).

3.3. Inverse Problem of the Entrainment Char-
acteristics

Motivated by the result (ii), a certain inverse prob-
lem is formulated as :
(a) for a given entrainment characteristics H(¢ — (E)),
does the input R(qg) exist or not 7 And,
(b) what kind of the input pattern R(¢) realizes a
maximum range of entrainment ?

To analyze such issues, it 1s convenient to express
I'(¢) and R(q;) by the Fourier series as :

T(¢) = (aycoske + by sin k). (3)

k=0

Input:

R(3) = (srcoskd + ysinkd).  (4)

k=0
From egs. (2), (3), and (4), we obtain
S .
H($=3) = 5 l(arzi + biye) cos{k(6 — 3)}
k=0
+(—aryr + brzy) sin{k(g — ¢)}]- (5)
If a given entrainment characteristics is expressed as
~ N ~
H(¢ =)= ax cos{k(¢ - )}
k=0
+0 sin{k(¢ — 6)}], (6)

then the following equations must be satisfied.

2ak,
2/))]67 (kZO:)N) (7)

apzr +bryr =
—apyy +bpzy =
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In the above situation (a), the unknown (zj,yx) can
be uniquely determined from egs. (7) for given coeffi-
cients (ag,br) and (ag, fr).

In Fig.5 we observe that the entrainment range be-
comes the widest for the case of a chopped sinusoidal
input. In this case, the range of stable phase differ-
ence is also the largest among the three input patterns.
Then, we have one natural question as: what kind of
input pattern realizes the (ideally) largest phase differ-
ence 7 The limiting case can be a sawtooth-like phase
response function H(¢ — &) as shown in Fig. 8, where
the phase difference becomes [—7, 7]. ( In this partic-
ular example, the order N is set to 10 as the number
of date points in the ISF T'(+) is limited. )

The resulting input R(¢) realizing the sawtooth-like
H(¢ — qg) is shown in Fig. 8. We observe that this
R(q;) takes negative value, which contradicts to the
‘positive’ intensity. Adding to this, the amplitude of
R(¢) in Fig. 8 becomes larger than 3, which is far
beyond the LRR (which is less than 0.05). Thus, in
this particular example, the input R(q;) does not exist
and the sawtooth-like phase response function cannot
be realized.

For the above issue (b), a hint for practical approach
is obtained [7], which will be explained in our presen-

tation.
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