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Abstract—This paper proposes a learning algorithm of
fuzzy reasoning systems with different error measure crite-
ria. In the method, objective functions with reasoning error
and regularization term are used in learning of the weights
of the consequent part for fuzzy rules. Two functions as
regularization terms are proposed. One is multi-peak func-
tion shaped like a hump and the other is a cone-shaped
function. The former is the method that the absolute val-
ues of the weights approach 0.5. The latter is the method
that minimizes the absolute of the sum of the weights. In
order to demonstrate the validity of the proposed method,
some numerical simulations are performed.

1. Introduction

Many studies have been done with self-tuning fuzzy sys-
tems. Their aims are to construct automatically fuzzy in-
ference rules by input and output data based on the steepest
descend method. These approaches based on the steepest
descend method contain some problems that are increase of
inference error or learning times. Because systems of these
approaches are constructed by using local search. In or-
der to resolve above problems, several techniques had been
proposed[1]. The methods with changing the structure of
fuzzy models like to increase or eliminate fuzzy rules in the
learning process have been proposed[2]. On the other hand
fuzzy systems are combined with other methods like ANN,
GA, SOM and LVQ. Further another approaches improved
the performance of systems using regularization have been
proposed[3]. On the normal regularized technique, regular-
ization parameter and function are added to the error mea-
sure function. In this paper, we take account of the weights
of consequent part and adopt different types of regulariza-
tion terms. One is a term derived by a multi-peak func-
tion and the other is derived by a cone-shaped function.
These terms work so that the weights of consequent part
approaches constant value. Hence, it can be expected that
the fuzzy systems are constructed as the function of the
system becomes smooth. Since this is an action to keep the
contribution of each rule, it seems that the performance of
parallel computation in the fuzzy models is improved. We
would like to examine the validity of the proposed method
through numerical simulations.

2. Fuzzy Reasoning Model Using Delta Rule

This section describes the fuzzy reasoning model using
delta rule. This reasoning model is the basis for proposed
method.

When the input data are expressed byx1, · · · , xm and its
output is expressed byy∗, the rules of simplified fuzzy rea-
soning can be expressed as the following:

Rj : i f x1 is M1 j and x2 is M2 j

· · · xm is Mm j then y∗ is wj , (1)

where j ( j = 1, · · · ,n) is a rule number,i (i = 1, · · · ,m)
is a variable number,M1 j , · · · , Mm j are membership func-
tions of the antecedent part, andw j is the weights of the
consequent part.

A membership value of the antecedent partµi is ex-
pressed as the following:

µ j =

m∏

i=1

Mi j (xi), (2)

whereMi j is membership function of antecedent part, and
of the center valueci j and the widthbi j are parameters. It
is expressed as the following:

Mi j (xi) =


1− 2·

∣∣∣xi−ci j

∣∣∣
bi j

(ci j −
bi j
2 ≤ x j ≤ ci j +

bi j
2 )

0 (otherwise)
(3)

The outputy∗ of fuzzy reasoning can be derived from the
Eq.(4)

y∗ =

∑n
j=1 µ j · w j∑n

j=1 µ j
. (4)

The valueci j ,bi j ,w j are regarded as the parameters of
the fuzzy reasoning model.

The objective functionE is defined to evaluate the rea-
soning error between the desirable outputyr and the output
y∗ of fuzzy reasoning:
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E =
1
2

(y∗ − yr )2. (5)

In order to minimize the objective functionE, the pa-
rametersci j , bi j , andw j are updated based on the descent
method as follows:

ci j (t + 1) = ci j (t) − Kc · ∂E
∂ci j

, (6)

bi j (t + 1) = bi j (t) − Kb · ∂E
∂bi j

, (7)

w j(t + 1) = w j(t) − Kw · ∂E
∂w j

, (8)

wheret is iteration times andKc,Kb,Kw are constants. The
Eqs.(6),(7),(8) are calculated as follows:

ci j (t + 1) = ci j (t) −
Kc · µ j∑n

j=1 µ j
· (y∗ − yr ) ·

(w j − y∗) · sgn(xi − ci j ) · 2
bi j · Mi j (xi)

, (9)

bi j (t + 1) = bi j (t) −
Kb · µ j∑n

j=1 µ j
· (y∗ − yr ) ·

(w j − y∗) · 1− Mi j (xi)

Mi j (xi)
· 1

bi j
, (10)

w j(t + 1) = w j(t) −
Kw · µ j∑n

j=1 µ j
· (y∗ − yr ), (11)

where sgn(z) is shown in the following:

sgn(z) =


−1 ; z< 0
0 ; z = 0
1 ; z> 0

(12)

In the fuzzy reasoning model using delta rule, the param-
etersci j ,bi j ,w j are updated according to Eqs.(9),(10),(11).

3. Fuzzy Reasoning Model with Regularization Term

3.1. Learning Rule

A learning algorithm added the regularization term is
proposed. The generalized objective functionS for fuzzy
reasoning model is defined as follows:

S(w) =
∑

p

P(p) · Up(w), (13)

whereP(p) is the probability of occurrence for input-output
datap, w is set of weightw j .

This paper deals with the case whereP(p) is distributed
uniformly, so Up(w) is only considered as an objective
function. Up is an objective function to be minimized for
given input and output data.Up is defined as follows:

Up(w) = E(w) + λG(w), (14)

where E(w) is an error term shown as Eq.(5).G(w) is
the regularization term that denotes complexity measure of
models.λ is a regularization parameter that is a small pos-
itive value. In the second term on the right-hand side in
Eq.(14), we will consider the following two cases. In the
first case, a multi-peak function is used and a cone-shaped
function is used in the second case.

A. Multi-peak Function ( Model I )
In this case, a multi-peak function is used as a regulariza-

tion term. It is a function combined two normal distribution
functions. A regularization termG is defined as follows:

GMP(w) =

n∑

j=1

(
0.5q1(w j) + 0.5q2(w j)

)
, (15)

qk(x) =
1√

2πσk

exp

− (x− µk)2

2σ2
k

 ( k = {1,2} ), (16)

whereσ1 = σ2 = 0.2, µ1 = −0.5 andµ2 = 0.5. Parameters
w j is updated as follows:

w j(t + 1) = w j(t) − K
′
w ·

∂Up

∂w j
, (17)

whereK
′
w is constants,t is iteration times. Partial differen-

tial term is calculated as follows:

∂Up

∂w j
=

µ j∑n
k=1 µk

· (y∗ − yr ) + λ
(
− w j − µ1

2
√

2πσ3
1

·

exp(− (w j − µ1)2

2σ2
1

) − w j − µ2

2
√

2πσ3
2

· exp(− (w j − µ2)2

2σ2
2

)
)
. (18)

B. Cone-shaped Function ( Model II )
In this case, a cone-shaped function is used as a regular-

ization term.G is defined as follows.

GCS(w) =

n∑

j=1

( w j

w0
)2

1 + ( w j

w0
)2
, (19)

wherew0 is a fixed value as the normalization factor. In
this case, the update equation becomes as follows:

∂Up

∂w j
=

µ j∑n
k=1 µk

· (y∗ − yr ) +

λ ·
2w j

w2
0

(1 + ( w j

w0
)2)2

. (20)
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3.2. Regularization Parameterλ

Coefficient λ is regularization parameter for determin-
ing ratio in considering both terms that are first term and
second term in Eqs.(18),(20). A following monotonically
decreasing function is used forλ.

λ(t) = λ0 × (1− t
Tmax

), (21)

wheret is iteration times andλ0 is initial value ofλ and
Tmax is maximum learning times for termination.

3.3. Learning Algorithm

A flow of learning algorithm is shown in the following:
[STEP 1]

The initial number of rules, the central coordinates of the
membership functionci j , the base width of the membership
functionbi j and weightw j are set randomly.

The thresholdθ1 of reasoning error and the thresholdθ2

of change of rate of reasoning error are given. Input and
output data (xp

1, · · · , xp
m, yr

p) for p = 1, · · · ,P is selected
randomly.λ0 is set to a fixed number.
[STEP 2]

Let t = 1. t is iteration times.
[STEP 3]

Let p = 1.
[STEP 4]

Input and output data (xp
1, · · · , xp

m, yr
p) is given.

[STEP 5]
Fitness of each rule is calculated by Eqs.(2), (3).

[STEP 6]
Reasoning outputy∗p is calculated by Eq.(4).

[STEP 7]
Weightw j is updated by Eqs.(17),(18), (20).

[STEP 8]
ci j andbi j are updated by Eqs.(9), (10).

[STEP 9]
If p = P then go to STEP 10.
If p < P then go to STEP 4 withp← p + 1.

[STEP 10]
Reasoning errorEr (t) is calculated, where

Er (t) =
1
P

P∑

p=1

|y∗p − yrp|. (22)

If Er (t) ≤ θ1 then go to STEP 11.
If Er (t) > θ1 then go to STEP 3 witht ← t + 1.

[STEP 11]
The rate of change of reasoning error4Er (t) and thresh-

old θ2 are compared, where4Er (t) is defined as Eq.(23).
Then

if 4Er (t) ≤ θ2 then learning is completed.
If 4Er (t) > θ2 then go to STEP 3 witht ← t + 1.

∆Er (t) = |Er (t) − Er (t − 1)|. (23)

Learning algorithm is operated according to the above pro-
cedure.

4. Numerical Experiment

4.1. Function Approximation

We perform an experiment to show the validity of the
proposed method using learning rule described in the pre-
vious section. We perform function approximation to in-
vestigate basic feature of the proposed method and com-
pare the performance of the proposed method with the delta
rule model. Here are two systems which is specified by the
following functions:

(a) y =
sin(exp(3x)) + 1

2
, (24)

(b) y = {sin(
√

(20x1 − 10)2 + (20x2 − 10)2)√
(20x1 − 10)2 + (20x2 − 10)2

+ 0.22}/1.22. (25)

The output data for training are set to add noise that con-
form to the normal distribution withµ = 0,σ2 = 0.1, after
y is calculated by Eqs.(24),(25). The conditions of the sim-
ulation are set as the following table (Table 1).

Table 1: Simulation conditions
4.1 function approx. 4.2 torus

(a) (b)
θ1 6.0× 10−3 3.0× 10−2 3.0× 10−2

θ2 2.0× 10−7 3.0× 10−6 3.0× 10−6

Kc 0.2 0.07 0.07
Kb 0.3 0.06 0.06

Kw(K′w) 0.7 0.5 0.5
λ0 0.001 0.01 0.01

Tmax 1000 10000 10000
# rules 22 25 25

# training data 40 225 200
# test data 400 2000 2500

initial ci j ,bi j random random random
initial bi j 0.1 0.7 0.1

Fig.(1) shows the reasoning output of system (a) for test
data. A dotted line denotes the function shown in Eq.(24)
and ‘�’ mark denotes learning data and a solid line denotes
the reasoning output for test data. On the delta rule model
in Fig.(a), the reasoning output are over fitted to the learn-
ing data. On the other hand, the reasoning output of pro-
posed model in Fig.(b),(c) is smooth.

Table 2 shows the result of function approximation.
Each value in the table expresses average of ten trials.
Mean square error (MSE) in the table denotes an error for
test data. MSE and iteration times are improved in com-
parison with the delta rule model. Especially, the Model II
shows good result.

97



0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

y

x

Delta Rule Model

y=(Sin(Exp(3x))+1)/2
Learning Data

Output

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

y

x

Elimination Term Model

y=(Sin(Exp(3x))+1)/2
Learning Data

Output

(a) Delta Rule Model (b) Model  I (c) Model  II

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

y

x

Mixed Distribution Model

y=(Sin(Exp(3x))+1)/2
Learning Data

Output

Figure 1: Result of function approximation.
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Figure 2: Result of torus division problem.

4.2. Torus Division Problem

This problem is that points on [0,1]× [0,1] are classified
into two classes with torus inside and outside. The inside
data and outside data for torus are assigned by class 1 and
class 0, respectively. The center of torus is (0.5,0.5), with
a minor diameter of 0.4 and a major diameter of 0.8. The
conditions of the simulation are shown in Table 1. The re-
sults of reasoning output are shown in Table 3. Each value
in the table expresses average of ten trials. From the results,
MSE is small compared with the delta rule model. The re-
sults of reasoning output using constructed rules are shown
in Fig.2. The mark of ‘•’ denotes reasoning output discrim-
inated correctly, and ‘4’ denotes discriminated incorrectly.
From the figure, incorrect point is great by delta rule model
within torus, however, it is improved by proposed models.
In the simulation, the “Model II” was more effective than
the “Model I”. It considers that this reason is because
“Model II” has a control function thatw j is approached to
small value.

Table 2: Result of function approximation.

Delta Rule Proposed Model
Model Model I Model II

(a) MSE(×10−4) 3.8 3.6 3.4

Iteration 1834.7 994.7 620.2

(b) MSE(×10−4) 10.6 9.8 7.6

Iteration 3595.1 2501.6 1148.8

Table 3: Result of torus division problem.

Delta Rule Proposed Model
Model Model I Model II

MSE(×10−2) 5.4 4.6 4.0
Iteration 5834.6 1458.1 1482.0

5. Conclusion

In this paper, we proposed a self-tuning fuzzy system
adopt two types of regularization terms to the objective
function. It was found through numerical experiments that
the proposed method shows good result. On the function
approximation, the function became smooth in comparison
with the delta rule model. The performance of the proposed
method was superior to the delta rule model.
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