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Abstract– This paper gives a design of line codes with 
negative autocorrelations based on chaos maps with finite 
bits. Numerical results show that the proposed line codes 
are useful for bandlimited spread spectrum transmissions.  
  
1. Introduction 
  

In recent years, high data rate wireless communication 
technologies such as International Mobile Telecommuni-
cation-2000 (IMT-2000), wireless ATM (Asynchronous 
Transfer Mode) applications, and wireless LAN (Local 
Area Network) are extensively used. It is expected in near 
future that the bandwidth of digital data signals is required 
to be much broader for high data rate transmissions with 
enormous capacity such as UWB (Ultra Wideband) 
communications [1]. However, wideband communications 
make it difficult to design antennas and circuits which can 
meet such wideband signals.  

On the other hand, some chaos-based communication 
systems are proposed in the last decade, for example 
chaos-based CDMA systems and chaos-shift keying (CSK) 
communication systems [2]. Such chaotic communication 
systems have some advantages, e.g., security enhancement, 
many kinds of sequences, and so on. 

In this paper, we employ chaotic binary sequences as line 
codes for baseband spread spectrum communication 
systems. The motivation of this work is that chaotic binary 
sequences with negative autocorrelations are useful as line 
codes because they have high density spectrum in high 
frequency band. We give some numerical results on 
properties of the proposed line codes. 
  
  
  
  
  
  
  
  
  
  
  
  
  
  

2. Generation Method of Chaotic Sequence by One-
Dimensional Map 

  
The simplest system generating chaotic sequences is a 

one-dimensional difference equation given by 
)(1 nn xx τ=+ ,  ,         (1) Ixn ∈ L,2,1,0=n

where  is a nonlinear map defined on an interval I. In 
this paper, we use a piecewise linear chaotic map with 

 as shown in Fig.1. The nonlinear function is 
defined by 
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where a(|a|>1) is a slope of the linear function in the 
center subinterval [3].  

, 

We transform a real-valued sequence into a 
binary sequence by the threshold function defined by 
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By adopting the above threshold function with t =0.5, a 
balanced chaotic binary sequence  is 
obtained. The autocorrelation function of such a chaotic 
binary sequence is theoretically derived as 
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where  is the time delay,  denotes the ensemble 
average, and  is the invariant density function.  
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If a is negative, the probability of bit changes from 1 to –
1 or from –1 to 1 is higher than no correlation case. This 
implies that the binary sequences with negative 
autocorrelations have high power spectrum density in a 
high frequency band, which is suitable for baseband 
spread spectrum communications. Thus, we can easily 
design line codes with negative autocorrelations based on 
the above chaotic maps.  
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Figure 1: Piecewise linear onto map.   
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3. Maximal-Period Sequences 
  

The statistical properties of chaotic binary sequences of 
finite length have some deviations from their theoretical 
values. However we can design binary sequences with 
constant autocorrelation values corresponding to the 
theoretical ones by the use of quantized chaos maps with 
finite bits. Fig.2 (a) and (b) show examples of quantized 
one-to-one maps (N = 24) based on the chaos maps with 
the correlation parameters a = –1.5 and –3.0, respectively. 
N black points indicate the mapping function f(x) obtained 
by quantizing the original mapping function . A 
periodic integer sequence can be generated by the 
difference equation x

)(xτ

n+1= f (xn) from an initial value x0, 
where xn ∈ {0, 1, ..., N-1}. We use maximal-period 
sequences  and convert them to binary sequences 

 by the threshold t = N/2 corresponding to 
the real number t = 0.5 for the original chaos maps.  It is 
confirmed by numerical experiments that the auto-
correlation properties of such maximal-period binary 
sequences are similar to those of chaotic ones generated 
by the original maps [4]. In addition, maximal-period 
binary sequences have the following remarkable features.  
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• If N is an even number,  is completely 
balanced, which implies that such sequences have no 
DC component. 
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  (a) a = –1.5 (b) a = –3.0 
  en
  

Figure 2: Examples of a one-dim sional map with finite bits (N =24). 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
• Constant autocorrelation values of  

can be designed for some N satisfying the conditions 
described in [5].  
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4. Bandlimited Sequences 
  

The signal of the line codes employing a maximal-
period binary sequence is given by 

∑
−

=

−Θ=
1

0
2/ ),()()(

N

n
cTnN nTtPxtx c             (5) 

where Tc is pulse duration and  
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We evaluate the discrete Fourier transform (DFT) of 
x(t), where the number of samples per pulse duration is 
equal to S. An example of power spectrum is shown in 
Fig.3 (a), where the type of 1-D maps in Fig.2 (a) is used. 
Let  and  be a set of DFT 
coefficients of x(t) and its bandlimited version, respect-
tively. In the transmission systems, we assume the signals 
are bandlimited as 
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where m is the number of components to be eliminated.

Figure 3: Examples of  power spectrum. 
(b) After bandlimited.  (a) Before bandlimited. 
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Figure 4: Original waveforms before bandlimited 
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Figure 5: Bandlimited waveforms (B = 0.5) 
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Figure 6: Autocorrelations of bandlimited signals 
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Namely, the transfer function of this channel is modeled 
as an ideal band pass filter (BPF). Define the ban-
dlimitation ratio by B=2m/N. Fig.3(b) shows an example 
of  , where the ratio B is equal to 0.5.  1
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First, Fig.4 (a) and (b) show examples of the original 
waveform of the line code x(t), where N =30 and the types 
of 1-D maps in Fig.2 (a) and (b) are used, respectively. 
For comparison, Fig.4 (c) shows an example of the wave-
form of an M-sequence, where the primitive polynomial is 
h(x) = x5+x3+1 and N = 31. Fig.5 shows the waveforms of 
each bandlimited signal which is obtained by the inverse 
DFT of , where B =0.5.  1
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Next, we calculated the crosscorrelation values between 

the original signal and its bandlimited signal. Note that 
such a crosscorrelation function is the same as the 
autocorrelation of the bandlimited signal itself. Fig.6 (a)– 
(c) show the autocorrelation functions of such signals. It is 
found that the peak values of autocorrelation of both 
maximal-period sequences are larger than that of the M-
sequence. Note that if the synchronization is achieved, 
then the peak value of the autocorrelation is desired to be 
large for detecting the information data in the presence of 
noise and interferences. 

Furthermore, we calculated autocorrelation functions of 
1,000 bandlimited signals of maximal-period sequences 
for each case of B=0.25, 0.5, and 0.75. Their average valu- 

  
  
  
  
  
  
  
  
  
  
  
  
  
es are shown in Fig.7 (a) and (b), where the types of 1-D 
map in Fig.2 (a) and (b) are used, respectively. The peak 
average values at the zero time delay are summarized in 
Table 1. In this table, the results for the correlation 
parameters a = –2.0 and a = –4.0 are also included. From 
Table 1, we can find that the influence of bandlimitation 
becomes smaller as the negative autocorrelation becomes 
stronger (i.e.,  ). 1−→a
  
5. Conclusion 
  

We have investigated the properties of bandlimited sign-
als of maximal-period sequences with negative autocorre-
lations. As a result, we can find that maximal-period seq-
uences with strongly negative autocorrelations have an 
enough peak value of autocorrelation even in a strongly 
bandlimited system. This implies that such sequences can 
be used as line codes for baseband spread spectrum com-
munications.  
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Figure 7: Average autocorrelation functions of 
bandlimited signals of maximal-period sequences 

(a) a = –1.5 

(b) a = –3.0 

Table 1: Average peak values of autocorrelation of 
bandlimited signals. 
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