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Abstract– Level-crossing statistics of random processes

have been intensively studied since the pioneering work of

S.O. Rice [1]. In this paper we extend the level crossing

analysis to chaotic time series. As a basic vehicle we use

the logistic map as process generator. In analogy to the

approach for random processes we analyze the statistical

characteristics mean, variance, probability distribution of

the level crossing intervals, and correlation properties

between adjacent level crossing intervals both

theoretically and experimentally. We present some

interesting features of level crossing intervals. We also

demonstrate that these characteristics are typical for

chaotic processes and widely different from those of

stationary random process such as Gaussian processes..

1. Introduction

   Since the pioneering work of S.O. Rice [1] many

authors have analyzed and discussed the statistical

properties of level crossings and level crossing intervals

for stationary random processes such as Gaussian or

Rayleigh processes. In this paper we analyze the statistical

properties of level crossing intervals of the chaotic process

generated by the logistic map in eq. (2) and depicted in

Fig.l. The results of this paper can be extended to the class

of chaotic sequences which are generated by other chaotic

maps equivalent to the logistic map, for example the Tent

map.

As shown in Fig. 2 the chaotic sequence is converted into

a binary signal by comparing every signal value with the

level value L. The time moment where the discrete signal

first-time exceeds the crossing level is called crossing

point. Depending on the direction of crossing we

distinguish up-crossing and down-crossing. The intervals

between the edges of the binary signal are an integer

multiple of the unit interval T  between the discrete signal

samples. T is set to 1 throughout this paper. The statistical

properties of mean, variance, probability distribution of

the crossing intervals, and the correlation between the

crossing intervals are studied both theoretically and

experimentally.

2. Basic Definitions

   Let Xi , i = 0,1,... be the discrete process values

generated by a return map

                         X i= F (X i 1) .                                    (1)

For the logistic map F is given by

                         F (x) = 4x(1 x) ,                               (2)

and thus the sequence Xi is defined by

   Xi = 4Xi 1(1 Xi 1), for 0 < X0 < 1 and i > 0.    (3)

  As illustrated in Fig.2, the continuous-time binary or

square-wave signal y(t) is generated from the discrete

random process Xi by comparison with the level L as

follows:

        

y(t) = 1, for Xi > L and t = iT ,

= 0, for Xi L and t = iT ,

= y(iT ), for iT < t < (i +1)T .

        (4)

where T is the length of the time interval  between the data

points i and i+1 of the discrete-time process Xi.

For the time intervals between crossings we introduce the

following notations:
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n+ is the length of an interval between an up-crossing as

first crossing and the n+2 th crossing.

n- is the length of an interval between a down crossing as

first crossing and the n+2 th crossing.

The index n means the number of crossings inside the

interval, and +- are the polarity of the start crossing.

Fig.3 illustrates these definitions.

For these level crossing intervals the probability

distributions are defined as follows:

pn+(k) = P( n+ = k), i.e. the probability that the crossing

interval n+ has the length k, and

pn-(k) = P( n- = k), i.e. the probability that the crossing

interval n- has the length k.

The mean values and variances of the crossing

intervals are denoted as follows:

µ n+ = E( n+) and µ n- = E( n-) are the mean values of the

above interval lengths respectively and
2

n+ = E(  n+ - µ n+ ) 
2
 and 

2
n- = E(  n- - µ n- ) 

2
 are the

variance values of n+ and n- respectively.

As illustrated in Fig. 4, the correlation sequences between

successive intervals Ui  are defined as follows;

    i± = E Un±Un+ i,m{ } µ0+µ0[ ] / 0+ 0( ) ,     

                                                            for  i=l,3,5,.. ,    (5)

    i± = E Un±Un+ i,±{ } µ0±
2[ ] / 0±

2
,  for i=2,4,6,.. ,    (6)

3. Experimental Setup

   As shown in Fig. 5, the experimental setup consists of

two functional blocks. One block is for a chaotic signal

generation, and the other block is for measurement of

level crossing intervals and statistical calculations for

these intervals. These two blocks are connected via

Ethernet. The calculation of chaotic signal generation is

done by Maple with 40 decimal digits of floating-point

calculation. The calculated results are written on data files

and they are transferred to the measurement block. In the

measurement block the chaotic signal is clipped at level L

in order to produce crossing intervals, and for these

intervals the crossing rates, probability distributions, mean

values, variances, and correlation of the intervals are

measured.

4. Experimental and theoretical results

   The probability distributions p0+(k), p0-(k), p1+(k), p1-(k)

of the level crossing intervals have been measured for

different levels between 0 and 1. On the other hand the

exact solutions for the probability distributions p0 and p1

have been derived in the form of recursive expressions

and also partially in a closed form. Because of the not

enough space we mention here only for the derivations of

p0+(k) and p1+(k).  For the derivation of p0+(k), the

following functions are defined.

        

f (x) = 4x(1 x), (7)

g(0, x) = f (x), n = 0

g(n, x) = f (n+1) (x) = f (g(n 1, x)), n 1
(8)

gcr (n, x)
1 g(n, x) > L, for n 0,

0 g(n, x) L, for n 0,
(9)

ngcr (n, x)
0 g(n, x) > L, for n 0,

1 g(n, x) L, for n 0.
(10)

where g(n,x) is the (n+1)th iterate of  f(x), and gcr(n,x) is

the clipped function of g(n,x) by level L.  The value 1 or 0

of gcr(n,x) indicates, whether the process, which started at

initial value x,  stays above or beneath the level L at step n.

The function ngcr(n,x) is the complement of gcr(n,x).  Now

we determine the region or set of the initial values x of a

process, which cross the level L upward at the step n = 1.

This region R1 can be written as

R1 = f1[ (L),min( f2 (L),L)], where

f1(x) = (1 1 x ) / 2, and f2 (x) = (1+ 1 x ) / 2. (11)

   
h(0, x) far (x)

1 f1(L) x < min( f2 (L),L),

0 others,
h(n, x) gcr (n 1, x)• h(n 1, x), for n 1.

(12)

The function h(0,x) in (12) shows the region of initial

value x of the process, which cross the level L upward as

the start up-crossing at step n = 1.   The function h(n,x)

shows the region of the initial value x, that the process

remains above the level L without downcrossing L until

step n.  The function h(n+1,x) can be calculated as the

cross section of the region of h(n,x) and gcr(n,x) in a
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recursive form.  The development of the functions is

illustrated in Fig. 6

The probability S(n) that the process remains above the

level L until step n, can be calculated by integration of the

probability density fp(x) for the region h(n,x) as

        
S(n) = h(n, x) f p (x)dx, for n 0,

0

1

where f p = 1 x(1 x)( ) .
           (13)

The probability distribution P0+(k) of the level crossing

intervals is calculated from the difference of the

probability S(n) at step k and k +1 as;

           p0+ (k) = S(k) S(k +1){ } S(0).                (14)

For the derivation of p1+(k) the following functions are

defined and calculated in a recursive way.

   

hs2(0,0,x) 0, for n = 0, (15)

hs2(0,1,x) 0, for n = 0, (16)

hs2(n,0,x) ngcr(n 1,x)hs2(n 1,1,x), for n 1, (17)

hs2(n,1,x) cr(hs2(n,0,x) + ngcr(n 1,x)h(n 1,x)),

for n 1, (18)

cr(x)
1 x > 0,

0 x 0.
(19)

S2(n,i) = hs2(n,i,x) f p (x)dx, for n 0,
0

1
i = 0,1. (20)

p1+(k) = S2(k,1) S2(k +1,0){ } S(0). (21)

Fig.7a-7f  Theoretical and experimental results of

probability distributions p0(k) and p1(k)
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The function hs2(n,0,x) shows the region of the initial

value x, that the process remains below the level L until

step n, after having the 1st downcrossing before step n.  In

the same manner the function hs2(n,1,x) shows the region

of the initial value x, that the process remains below the

level L until step n, after having the 1st downcrossing

until step n (including the 1st downcrossing at step n).

    Some typical results for the probability distributions p0

and p1 are shown in Fig.7. Here both theoretical and

experimental value are plotted in the same diagram, and

they agree very well. Some remarkable properties of the

probability distributions of level crossing intervals are

summarized here:

1) The Level crossing intervals of this process show

completely different properties depending on the level

value L. Roughly three regions (0 < L < 0.25, 0.25 < L <

0.75, and 0.75 < L < 1) can be distinguished. The border

values L  = 0.25, L  = 0.5 and L  = 0.75 are special values.

2) The probability distributions of p1+(k) and p1-(k) are

different in general, whereas the first moments of them are

equal, i.e. µ1+ = µ1-. This property is quite different from

that of Gaussian process where p1+(k) and p1-(k) are

always equal. This is an interesting and remarkable result

of this analysis.

3) p1+(k) and p1-(k) are equal in the region L > 0.75, and at

the level values L = 0.25, 0.5, 0.75.

4) For the level L >= 0.75, p0+(k) has the value 1 at k = l,

and 0 for other k. Corresponding to this p1+(k) and p1-(k)

are equal to the probability distribution, which is obtained

by shifting p0-(k) right one step.

 i.e. p1+(k) = p1-(k) = p0-(k-1).

5) For the level value L  0.75, p0-(k) has the same

distribution which and decreases exponentially with k:

p0-(k) =(0.5)
k
, and p0-(0) = 0.

6) p0+(k) and p0-(k) are equal at level value L = 0.5.

7) At L = 0.25, every second value of p0+(k) is zero, i.e.

p0+(k) = 0, for odd k and k = 0 , and

p0+(k) = (0.5)
(n/2)

, for even k.

5. Correlation between successive intervals

   Figs. 8a and 8b show the correlation coefficients 1+ and

1- in dependence on the level L, and both theoretical and

experimental results are plotted in the same diagramm.

The most remarkable fact is that 1+ and 1- are not equal.

1+ has several zero points, e.g. 1+ = 0 at level values L =

0.25, 0.5, 0.75, and oscillates between positive and

negative values in the range of L < 0.75. On the other

hand 1- = 0 for all values of level L. This result is rather

interesting, hence 1+ and 1- must be equal for stationary

random processes.

6. Discussion and Conclusion

   The level crossing intervals of the chaotic process

derived from the logistic map show a lot of interesting

properties. Mostly remarkable is that the polarity

dependence of the crossing intervals, i.e. the statistical

characteristics of the crossing intervals like probability

distributions and correlations are strongly determined by

the direction of crossing, whether the intervals start with

up crossing or down crossing. The properties of this

chaotic process are quite different from the properties of

stationary random processes like the Gaussian process. A

possible application of the results shown can be in chaos

generator design.
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