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Abstract– This paper presents a model of finite fuzzy 
automata with adaptive input membership functions that 
could be used for evaluating time sequences of events. In 
our case an event is a certain amplitude of the patient’s 
blood pressure signal, which was acquired from their wrist. 
A time of occurrence of this event is also important. The 
automaton accepts the sequence of events that occur in 
definite time instants, where some predefined deviations 
are allowed. This is achieved through defining the shape 
and position of the membership functions. With them the 
designer determines what differences between given and 
expected input sequences can be tolerated. 
 
1. Introduction 

 
Studies have showed that abnormalities in the 

peripheral circulation can be detected through arterial 
blood velocity analysis [6], [8]. We hypothesize that such 
early detection can be based on spotting certain events 
present in the blood pressure signal of the patient. In our 
case an event is represented by a certain amplitude of the 
patient's blood pressure signal, which was acquired from 
their wrist. The biggest drawback is that blood pressure 
signals show great variability between individuals. As 
there are great differences between signals, standard 
methods of signal processing are difficult to apply. 
Manual screening of signals is slow and laborious as the 
standard measuring period is up to 30 minutes (i.e. 
approximately 1800 heartbeats). These reasons lead us to 
develop a method based on fuzzy automata for the 
isolation of waves that differ from an ideal one. The rules, 
as well as the allowed tolerances are based on the ideal 
wave. The output of the automata is the degree of 
similarity of the observed wave and the ideal one. When 
the output is low, the physician should be notified about 
this abnormal wave. By using this method, the time spent 
by the physician for screening signals, can be reduced 
significantly. 

In many application domains it is necessary to handle 
time dependant data. Our knowledge about time and the 
course of events is rarely complete, but rather pervaded 
with vagueness and uncertainty. Because of this, the fuzzy 
approach to handling time dependant data seems 
appropriate [7]. Dubois and Prade [1] proposed a model 
for the representation and processing of fuzzy temporal 
knowledge based on possibility logic, but handling time 

dependant data is also possible by using fuzzy automata 
[2]. 

In this paper we apply the fuzzy automaton [2] to the 
problem of recognition of time sequences of events. In the 
first part of the paper we discuss fuzzy time, we continue 
by presenting our fuzzy automata and conclude by 
applying it to medical signal processing. We prefere to use 
Yager's notation for representing membership functions 
[8], so throughout the paper A(x) is the degree of 
membership of x in A, thus A(x)=µA(x). 

 
2. The Fuzzy Temporal Primitive 
 

Following the definition in Dubois and Prade [1], the 
fuzzy temporal primitive date a is any fuzzy instant of 
time represented by the possibility distribution Aπ  over T, 
where T is a continuous linear scale that models time. The 
possibility distribution is a mapping from T to [0,1], 
where for each t T∈ , is the possibility that date a is 
precisely the time instant t. By means of Aπ , we can 
define the fuzzy set A over T, which represents all 
possible values of a. If A is the membership function 
associated with, A we have , ( ) ( )At T t A tπ∀ ∈ = . 

 

 
Fig. 1 Precisely (a), imprecisely (b) and fuzzy (c) known 
dates. 
 

The fuzzy set associated with date a is assumed to be 
convex and normalized. Date a can be precise (Fig. 1a), 
imprecise (Fig. 1b) or fuzzy (Fig. 1c). In the first case, 
there exists only one time instant 0t  such that 0( ) 1A tπ = . 
In the second case all possible values of date a are 
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between two time points 0t ′  and 0t ′′  such that 

0 0[ , ], ( ) 1At t t tπ′ ′′∀ ∈ =  . In the third case the possible 
values of date a are defined by the possibility distribution 
that takes values from the interval [0,1]. The degree of 
membership is in this case, of a triangular shape and 
varies from 0 to 1 with the maximum value at 0t . 

 
2.1. The Time Sequence of Dates 
 

Dates are usually connected with the presence of some 
phenomena or some event from the physical world. 
Natural phenomena usually do not start with full intensity, 
therefore it is sometimes difficult to say if and when the 
phenomenon starts at all. For example, when considering 
the progress of an illness, there is usually known only an 
approximate sequence of events and these can not be 
described precisely. 

A time sequence of events can be represented on the 
time axis as a sequence of dates which are precisely, 
imprecisely or fuzzy known, depending of our knowledge 
about them. 

Let us study the sequence of two events, where the 
occurrence of the first one is imprecisely known and can 
be represented by date a with nonzero possibility between 
points 0t ′  and 0t ′′ and the occurrence of the second is 
precisely known and can be represented by date b with 
value 1 at 2t . When the first event relating to date a 
occurs exactly at the expected time instant 1t , the second 
event should occur at time instant 2t  (Fig . 2a). 
 

 
Fig. 2 Sequence of a imprecisely and precisely known 
events (a) and the modification of the second event caused 
by the time difference of the actual time of occurrence of 
the first event (b). 

 
However, if the first event occurs at time instant 1t t≠ , 

where 1 1t t t′ ′′≤ ≤ , then the second event represented by 
date b is shifted along the time axis for the difference 
between the expected ( 1t ) and actual occurrence (t) of the 
first event (Fig. 2b). The new expected occurrence of the 
second event represented by date b now coincides with 2t , 
where 2 2t t′ = − ∆  and 1 1t t′ = − ∆ . 

The event related to date b therefore usually occurs at 
the same time distance from the event related to date a. As 
date a is imprecisely known, the maximum shifting of 
date b is determined by the degree of imprecision of date 
a (the interval 1 1[ , ]t t′ ′′ ). 

Let us study the sequence of two events, where the first 
can be represented by a fuzzy known date a and the 
second by a precisely known date b with value 1 at 2t   
(Fig. 3a).  

 

 
Fig. 3 Sequence of a fuzzy and precisely known events (a) 
and the modification of the second event caused by the 
time difference of the acctual time of occurence of the first 
event (b). 

 
The modification of date b caused by the discrepancy 

between the expected time of occurrence ( 1t ) and the 
actual time of occurrence (t) of the first event that is 
related to the date a, is shown in Fig.3b. In this case, the 
modification takes the form of shifting date b for ∆  and 
reducing its membership degree as well. The reduction is 
the result of the fact that the membership in date a at the 
actual time of occurrence of the related event is less than 1. 

Figure 4 depicts the case when the first event related to 
date a does not occur at a crisp time instant t, but is rather 
given as a fuzzy set t! . In this case the modified date b 
takes the form of the fuzzy intersection between date a 
and the fuzzy set t!  and is shifted in time for ∆ . In this 
way the originally precisely known date b related to the 
second event becomes a fuzzy date. 

 

 
Fig. 4 Modification of the second event caused by a fuzzy 
known time of occurrence of the first event. 
 
2.2. The Fuzzy Automaton with an Adaptive Input 
Membership Function Accepting 2-Dimensional Inputs 
 

The fuzzy automaton with adaptive input membership 
functions, explained in detail in [2]-[4] , is able to adapt to 
variations between the processed unknown pattern and a 
template. The fuzzy automaton can be defined as: 

Definition 1:Let 1{ ,..., }nQ q q=  be a set of all possible 
states of the automaton and 1{ ,..., }mE e e=  be a finite set 
of input symbols defined as fuzzy sets on the Cartesian 
product 2

1 2 1 2[ , ] [ , ]X Y x x y y× = × ⊂ "  where ( , )iE x y  is 
the membership function of fuzzy set E and ( )i iE e . Let δ  
be the mapping that defines transitions between states 
( : {0,1})Q E Qδ × × → , 0ŝ  the fuzzy initial state and 
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FQ Q⊂ the set of final states. Then the five-tuple 
0ˆ, , , , FA Q E s Qδ=  is a fuzzy automaton. 

The state of automata A at step k, denoted ˆks  is the n-
tuple 1ˆ ,...,k k k

ns S S= , where k
iS  is the fuzzy set on 

Cartesian product 
1 2 1 2

2[ , ] [ , ]X Y x x y yS S s s s s× = × ⊂ "  at 

step k that is assigned to state iq . The input to the 
automaton in step k, denoted kX , is the fuzzy set on 
Cartesian product 2X Y× ⊂ "  
 
2.3 Medical Signal Processing 
 

The blood pressure signals, acquired from the patients' 
wrists, when compared, show considerable variability 
between individuals as well as between different 
measurements on the same patient. The latter case is 
usually caused by the patient's breathing or movement, 
which both lead to movements of the measuring 
equipment. This reduces the possibility of the application 
of standard signal processing methods. The automaton 
that was presented in the previous section can cope with 
this variability and as such represents a possible solution 
to the problem of medical signal processing. 

The signal is acquired by means of a heart rate monitor 
Colin BP-508 that simultaneously acquires the 
Echocardiograph (ECG) and blood pressure signals. The 
blood pressure signal is acquired from the patient's wrist. 
In Fig. 5a we can see an example of the two signals 
acquired from a healthy patient. The ECG signal (Fig. 5a 
top) measures electrical pulses, which directly effect the 
contractions of the heart muscle. A standard part of the 
ECG signal is called R peak (short and high pulse). 
Between two R peaks there is a complete heart muscle 
contraction period (systole and diastole). Therefore we 
can use R peaks as precise time markers that enable us to 
extract blood pressure signal sections from the complete 
blood pressure signal (Fig. 5a bottom). A set of signal 
sections can be found in Fig. 5b. The figure presents a set 
of 60 consequent signal sections. It can be seen that they 
can be judged as equal with a certain amount of variability 
in time and amplitude. 

The automaton that we presented in the previous 
section uses a two-valued input, where the first value is 
time and the second is the amplitude of the signal. For the 
evaluation of the similarity of the signals we defined four 
fuzzy sets that describe four characteristic events in the 
signal. The membership functions representing the dates 
related to these events can be found in Fig. 6a. From all of 
the membership functions the first one allows for the 
greatest variability in both time and amplitude and as such 
also covers the greatest area when displayed as a contour 
plot. For the rest of the membership functions we used 
low variation in time but high in amplitude, thus their 
plots are narrow and long.  

Figure 6b shows an example of one processing cycle. It 
can be seen that the first membership function remains 

unchanged compared to the original, while all the 
following membership functions change in accordance 
with the degree of dissimilarity of the time of occurrence 
of the previous event. The last membership function is 
thus affected by all of the changes caused by the 
discrepancies of all previous events. A detailed description 
of the algorithm can be found in [2]. 

 

 
Fig. 5 ECG and blood pressure signals (a) and a set of 60 
successive blood pressure signal sections (b). 
 

The output of the automaton is the degree of similarity 
of our four characteristic events of the current signal wave 
when compared to the four membership functions. The 
number of membership functions is optional, but in our 
case the four were defined. For a greater precision a 
higher number of membership functions can be defined, 
but in our case four proved as enough. 

Figure 7 shows the degree of similarity of the signal 
sections as a function of time, where time is the time of 
occurrence of the section in the complete blood pressure 
signal (in our case 1 minute). The sample time in this case 
was relatively short, the patient was lying perfectly still 
and thus the signal sections are noise-free. The latter fact 
can be deduced from the degrees of similarity that are all 
higher than 0.5. Regardless to that the degree of similarity 
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fluctuates. This can be assigned to the fact that the 
pressure in the vein depends on the intensity of the 
contractions of the heart muscle that varies constantly, the 
dilation of the thorax, the movements of the patient, etc. 

 

 

 
 

Fig. 6 Characteristic events of the blood pressure signal 
sections and their membership functions (a) and their 
modifications caused by the time difference of their actual 
time of occurrence (b). 
 

The usefulness of the presented algorithm becomes 
apparent when longer monitoring periods are taken into 
account. In these cases big similarity variations become 
instantly apparent. The physician can read this as a 
notification that a thorough analysis of the signal is 
needed and thus can save valuable time for not analysing 
normal data. 
 
3. Conclusion 
 

The usefulness of the presented algorithm becomes 
apparent when longer monitoring periods are taken into In 
this article we presented a novel approach to medical 

signal analysis that is based on fuzzy automata. The most 
interesting part of our approach is that it allows physicians 
set reference events and their allowed variations in both 
amplitude and time. When longer monitoring periods have 
to be analysed the algorithm becomes very useful since it 
notifies the physicians that a thorough analysis is needed 
and as such can save them valuable time for not analysing 
normal data. 

 

 
 

Fig. 7 Plot of the degree of similarity as a function of time. 
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