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Abstract—Pseudorandom orthogonal codes based on
Hadamard matrices for synchronous DS/CDMA systems in
multipath environment are proposed. The important result
is that the proposed method can improve correlation prop-
erties of Walsh codes while keeping their orthogonality and
balanced property.

1. Introduction

A code division multiple access (CDMA) system based
on spread spectrum (SS) techniques, which has already
been used for Interim Standard 95 (IS-95) and International
Mobile Telecommunications 2000 (IMT-2000), has various
merits such as increase of its potential capacity, robustness
to multi-path fading, anti-jamming, and so on. The perfor-
mance of CDMA greatly depends on spreading sequences
used for spreading the bandwidth of information signals
[1].

In synchronous DS/CDMA systems, orthogonal se-
quences have been adopted for channel separation. The
well-known orthogonal sequences are Walsh codes and or-
thogonal variable spreading factor codes (OVSF) [2]. How-
ever, the autocorrelations of their codes may be consider-
ably large even when the delay time is nonzero due to their
regular structure. This might greatly degrade the system
performance in the presence of multipaths even though the
system would acheive perfect synchronization. As in W-
CDMA [2], the use of scramble codes (long codes) can
improve autocorrelation properties of orthogonal codes. A
similar method to such improvement for Walsh codes is
also proposed in [3]. However, these methods cannot guar-
antee the balanced property of the orthogonal codes.

In this paper, a simple method to randomize the regular
structure of Walsh codes is proposed while preserving their
orthogonality and balanced property. We evaluate the cor-
relation properties of the proposed sequences by numerical
experiments, and compare them with those of Walsh codes.

2. DS/CDMA System

In this paper, we consider a baseband model withU ac-
tive users andM propagation paths. Thei-th user generates
a baseband signaldi(t) given by

di(t) =
∞∑

n=−∞
di,nai(t− nNTc), (1)

ai(t) =
N−1∑

k=0

a
(i)
k PTc(t− kTc), (2)

PTc(t) =
{

1 (t ∈ [0, Tc])
0 (t /∈ [0, Tc]),

(3)

wheredi,n ∈ {−1, 1} is a data bit,ai(t) is a spreading

signal,a(i)
k ∈ {−1, 1} is an element of the spreading code,

Tc is chip pulse duration, andN is the spreading factor.
The interference components at thei-th correlation receiver
whent = Td = NTc is given by

Zi =
M∑

m=1

{
di,−1ρ

i
m

∫ τ i
m

0

ai(t− τ i
m)ai(t)dt

+di,0ρ
i
m

∫ Td

τ i
m

ai(t− τ i
m)ai(t)dt

}

+
U∑

j=1,j 6=i

M∑
m=0

{
dj,−1ρ

j
m

∫ τj
m

0

aj(t− τ j
m)ai(t)dt

+dj,0ρ
j
m

∫ Td

τj
m

aj(t− τ j
m)ai(t)dt

}
, (4)

whereρi
m andτ i

m are the amplitude and the delay time of
them-th path of thei-th signals, respectively. In the right-
hand side of eq.(4), the first and second integrals depend on
autocorrelation functions (ACF) ofai(t), and the third and
fourth ones depend on crosscorrelation functions (CCF) be-
tweenai(t) andaj(t).

Now we define the even and odd CCF respectively by [4]

Ri,j(l) = Ai,j(l) + Ai,j(l −N), (5)

R̂i,j(l) = Ai,j(l)−Ai,j(l −N), (6)

whereAi,j(l) is the aperiodic CCF defined by

Ai,j(l) =





N−1−l∑

k=0

a
(i)
k a

(j)
k+l (0 ≤ l ≤ N − 1)

N−1+l∑

k=0

a
(i)
k−la

(j)
k (1−N ≤ l < 0)

0 (|l| ≥ N).

(7)
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Note that they are ACFs wheni = j.
The maximum value of bit error probabilityPmax is

given by

Pmax = 1− Φ((1−Max Zi/N)
√

2Eb/N0) (8)

whereEb is the data bit energy,N0 is the two-sided spectral
density of additive white Gaussian noise, andΦ(·) is cumu-
lative Gaussian distribution function. MaxZi depends on
maximum values of the even/odd ACFs and CCFs.

3. Pseudorandom Orthogonal Sequences

We propose orthogonal sequences based on Hadamard
matrices for synchronous DS/CDMA communications in
multipath environment. An Hadamard matrixHk of order
k is a2k × 2k matrix recursively defined by

Hk =
[

Hk−1 Hk−1

Hk−1 −Hk−1

]
, H0 = [1], (9)

which satisfies

HkHT
k = 2kIk, (10)

where the superscriptT denotes the transpose andIk is
the2k × 2k unit matrix. Eq.(10) implies that the rows (or
columns) are orthogonal to each other. Note that each row
(or column) except the 1st one is completely balanced, that
is, the number of1 or −1 is exactly equal to2k−1. Thus,
each row or column can be used as orthogonal codes of
lengthN = 2k, which are referred to asWalsh codes, for
synchronous DS/CDMA systems.

However, the ACFs of Walsh codes have some high peak
values even when the delay time is nonzero. The reason
is that the construction of Walsh codes is regularly done.
Hence, we interchange the columns of an Hadamard matrix
at random in order to randomize their inherent regularity.
After interchanging, we use the rows except the 1st one as
orthogonal codes. It should be noted that such codes keep
not only orthogonality but also balanced property. Figure
1 shows an example of a set of orthogonal sequences ob-
tained by the proposed method, whereN = 8.

4. Correlation Properties

4.1. Aperiodic ACF/CCF

First, we investigated aperiodic ACFs of the proposed
orthogonal codes forN = 32 except the1st row. Figures 2
and 3 show the average and maximum values of the aperi-
odic autocorrelation magnitude|Ai,i(l)|. We generate 100
sets of the proposed orthogonal sequences by changing an
initial value for random number generation. Therefore, the
average and maximum values are obtained from31 × 100
sequences. For comparison, the results of Walsh codes are
also shown in these figures, where the average and the max-
imum are obtained from the original 31 Walsh codes. From
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Figure 1: An example of the proposed sequences.

these figures, it is shown that both average and maximum
aperiodic autocorrelation values of the proposed sequences
are considerably smaller than those of Walsh codes.

Next, we investigated aperiodic CCFs of the proposed
orthogonal sequences and Walsh codes for all possible
pairs in each set. Figures 4 and 5 show the average and
maximum values of the aperiodic corsscorrelation in each
delay time. We use the same sequence sets as described
above, that is, the average and the maximum is obtained
from 100×(

31
2

)
sequence pairs for the proposed sequences.

From Figure 4, it is shown that the average aperiodic corss-
correlation properties of the proposed sequences become
slightly worse than those of Walsh codes. However, from
Figure 5, we can find that the maximum values are smaller
than those of Walsh codes.
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Figure 2: Average values of aperiodic autocorrelation.
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Figure 3: Maximum values of aperiodic autocorrelation.

4.2. Even and Odd ACF/CCF

We also investigated even and odd ACFs/CCFs of the
proposed sequences for the same conditions as the previous
subsection. Figures 6–9 show the average and maximum
values of even and odd ACFs, respectively. From these
figures, we can find that the ACFs are improved, though
the maximum values of odd ACFs are larger than those of
Walsh codes for some time delays. Especially, the even
ACFs are considerably improved.

Furthermore, we investigated even and odd CCFs for the
same conditions as shown in Figures 10–13. From Figures
10 and 11, we can find that the average even and odd cross-
correlation properties of the proposed sequences become
slightly worse than those of Walsh codes. However, we
find that the maximum values of even CCFs are improved,
though the maximum values of odd CCFs are similar to
those of Walsh codes.

5. Conclusion

We proposed pseudorandom orthogonal sequences
based on Hadamard matrices. We investigated correlation
properties of the proposed sequences by numerical experi-
ments. It is shown that both average and maximum values
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Figure 4: Average values of aperiodic crosscorrelation.
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Figure 5: Maximum values of aperiodic crosscorrelation.

of ACFs are superior to those of Walsh codes. We also
find that the maximum values of CCFs of the proposed se-
quences are better than those of Walsh codes, though the
average values of CCFs are slightly inferior to Walsh codes.
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Figure 6: Average values of even autocorrelation.
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Figure 7: Average values of odd autocorrelation.
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Figure 8: Maximum values of even autocorrelation.
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Figure 9: Maximum values of odd autocorrelation.
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Figure 10: Average values of even corsscorrelation.
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Figure 11: Average values of odd corsscorrelation.
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Figure 12: Maxmum values of even corsscorrelation.
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Figure 13: Maximum values of odd corsscorrelation.
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