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Abstract—In this paper we present a simple method for
controlling hyperchaos with n × m scrolls into an aimed-
equilibrium by utilizing feedback of state. Using the
method we can stabilize any fixed point among n × m un-
stable embedded-fixed-points.

1. Introduction

In continuous-time systems, when the system order is
higher than 3, it is possible to have more than one positive
Lyapunov exponent. If this is the case, the corresponding
behavior is known as hyperchaos [1] . The n × m-scroll at-
tractor presented by D. Cafagna and G.Grassi [2] is one of
typical hyperchaos. The attractor is generated by combin-
ing the chaotic n-scroll attractor related to the first Chua’s
circuit with the chaotic m-scroll attractor related to the sec-
ond Chua’s circuit. The n×m-scroll hyperchaos behaves in
very complicated manner. Systems with such hyperchaotic
behavior are considered to be a good candidate for funda-
mental cells for dynamic associative memories. For this
application, a simple and powerful controlling method for
hyperchaos is required.

In this paper, we present a simple method for control-
ling n × m-scroll hyperchaos into an equilibrium by uti-
lizing a state-feedback approach. Observing the nonlinear
function terms in the hyperchaotic system, we stabilize the
system into an aimed-fixed point through feedback of time-
derivative of the states related to the nonlinear functions.
Location of the fixed point does not change from origi-
nal one without feedback since feedback of time-derivative
vanishes at an equilibrium. The proposed method can sta-
bilize any one of n ×m unstable fixed-points in the system.

2. Controlling Chaos by State-Feedback

Chaotic systems are characterized by its nonlinear terms.
The feedback method to be proposed here observes the
nonlinear terms. Stabilizing the states related to these non-
linear terms, all states in this system are controlled into an
equilibrium. Although there are chaos control approaches
based on conventional feed back method [4], the proposed
method is different from them.

As an example of controlling chaos by the present
method, we consider n-scroll chaotic system:

ẋ1 = α(x2 − f (x1))

ẋ2 = x1 − γẋ1 − x2 + x3 (1)

ẋ3 = −βx2

where f is a nonlinear function of a modified-sine with n
zeros with positive-slope . When γ = 0, the system (1)
coincides with the conventional n-scroll system [3]. The
equilibria xeq satisfy ẋ = 0, and there are (2n − 1) equilib-
ria. Note that from (1), the conponent x1 of each equilibria
xeq is determined by nonlinear function f = 0. Near an
equilibrium, if x1 is forced to satisfy f = 0, then the sys-
tem (1) can be stabilized to the equilibrium. In order to
accomplish this situation , in (1), γẋ1 is fed back to the
right hand side of the second equation.This feedback acts
such that it makes to decrease x1 when x1 increases, while
it makes to increase x1 when x1 decreases. As a result x1

converges to give f = 0 and simultaneously the other com-
ponents of x also converge. The converged-equilibrium is
the same point with the original equilibrium without feed-
back since ẋeq = 0.

We are going to stabilize the chaotic system (1) by
changing the control parameter γ. The Jacobian matrix J at
an equilibrium is given by

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α ḟ (xeq) α 0
1 + γα ḟ (xeq) −1 − γα 1

0 −β 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2)

Eigenvalues of J can be found as solutions of the charac-
teristic equation det[λI − J] = 0:

det[λI − J] =

∣∣∣∣∣∣∣∣

λ + α ḟ (xeq) α 0
−1 − γα ḟ (xeq) λ + 1 + γα −1

0 β λ

∣∣∣∣∣∣∣∣
(3)

= a0λ
3 + a1λ

2 + a2λ
1 + a3λ

0 (4)

= 0 (5)

where
a0 = 1 (6)

a1 = 1 + γα + α ḟ (xeq) (7)

a2 = α ḟ (xeq) − α + β (8)

a3 = αβ ḟ (xeq). (9)

2004 International Symposium on Nonlinear
Theory and its Applications (NOLTA2004)

Fukuoka, Japan, Nov. 29 - Dec. 3, 2004

263



We classify characteristics of the equilibria by their eigen-
values as a number of eigenvalues with positive real parts,
index r:

• Saddle-type I : Equilibrium for d f
dx < 0

• Saddle-type II : Equilibrium for d f
dx > 0

where I and II stand for r = 1 and r = 2 respectively. For
these equilibria, we stabilize the system by suitably setting
γ in such a way that all�λ becomes negative. However, we
can not stabilize all the equilibria. From Routh-Hurwitz’s
stability criterion we can show that only the type-II (with
d f
dx > 0 ) can be stabilized.

Figure 1 shows an attractor of 3-scrolls and types of
equilibria with α = 10.814, β = 14, n = 3, γ = 0 .
Figure 2 shows its nonlinear function f with a = 1.3, b =
0.11, c = 2 [3].

Figure 3 shows an attractor of 4-scrolls (n = 4) and Fig-
ure 4 shows its nonlinear function f .
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Figure 1: 3-Scroll attractor
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Figure 2: Nonlinear function f for 3-scrolls
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Figure 3: 4-Scroll attractor
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Figure 4: Nonlinear function f for 4-scrolls

We express characteristics of each equilibrium as in the
Table 1 where n denotes the number of scrolls and k de-
notes the sequential number of each equilibrium from ori-
gin in the coordinates x1 , (k = 0,±1,±2, ...).

Table 1: Characteristics of Each Equilibrium

n k index r
odd odd index 1

even index 2

even odd index 2
even index 1

Table 2 and 3 shows characteristics of each equilibrium
for 3-scrolls and 4-scrolls respectively.
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Table 2: Characteristics of unstable equilibria for 3-scrolls

k equilibria xeq index r
-2 (−5.2, 0, 5.2) index 2
-1 (−2.6, 0, 2.6) index 1
0 (0, 0, 0) index 2
1 (2.6, 0,−2.6) index 1
2 (5.2, 0,−5.2) index 2

Table 3: Characteristics of unstable equilibria for 4-scrolls

k Equilibria xeq index r
-3 (−7.8, 0, 7.8) index 2
-2 (−5.2, 0, 5.2) index 1
-1 (−2.6, 0, 2.6) index 2
0 (0, 0, 0) index 1
1 (2.6, 0,−2.6) index 2
2 (5.2, 0,−5.2) index 1
3 (7.8, 0,−7.8) index 2

3. Control of n × m Scroll Attractors

Hyperchaos with n × m-scrolls[2] can be generated by
combining n-scrolls (system 1) with m-scrolls (system 2).
Characteristics of equilibria in this system is classified into
3 types as in the following:

• Saddle-type II : Combination of saddle-type I with
saddle-type I

• Saddle-type III : Combination of saddle-type I with
saddle-type II

• Saddle-type VI : Combination of saddle-type II with
saddle-type II

where each saddle-type II, III, IV has index r = 2, 3, 4 re-
spectively.

Now we consider to stabilize n × m scrolls into an equi-
librium by applying feedback of state as shown in section
2 for each n(m)-scrolls. Referring (1), the system equation
is described by

ẋ1 = α(x2 − f (x1))

ẋ2 = x1 − γ1 ẋ1 − x2 + x3 + H(x5 − x2)

ẋ3 = −βx2 (10)

ẋ4 = α(x5 − g(x4))

ẋ5 = x4 − γ2 ẋ4 − x5 + x6 + H(x2 − x5)

ẋ6 = −βx5.

Figure 5 shows (a) attractors and (b) allocation of eigen-
values for conventional n×m scrolls (without feedback γ1 ẋ1

and γ2 ẋ2). Figure 6 shows types of equilibria shown in Fig-
ure 5-(b).
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(a) Attractor of hyperchaos
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(b) Allocation of eigenvalues at equilibria. Abscissa: �λ;
Ordinate: �λ; ◦:eigenvalues of system 1; ×:eigenvalues of
system 2

Figure 5: Attractor of hyperchaos with 4 × 3 scrolls
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Figure 6: Type of each equilibrium
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Figure 7: Stabilzing the hyperchaos into an equilibrium A

In system (10), observing nonlinear functions f , g, γ1 ẋ1

and γ2 ẋ2 are fed back to stabilize states x1 and x2 related
to nonlinear functions. Using the Routh-Hurwitz’s stabil-
ity criterion and near the targetted-equilibrium , control pa-
rameters γ1 and γ2 are set such that all the real parts of
eigenvalues of the Jacobian matrix for system (10) are neg-
ative.

In this way the feedback-control is carried out for each
subsystem 1 and 2 to stabilize whole system (10). How-
ever, in each subsystem, only saddles with type-II can be
stabilized. Therefore, as a cobination of these type-II’s,
only saddles with type-IV are stabilized in the system (10).

Detailed steps for stabilizing into an equilibrium A are
given as in the following. Figure 7-(a) shows trajectories
of 4 × 3-scrolls and allocation of type-IV saddles (one of
them is the target point A) on the x1 − x4 plain. The point A
consists of conponents A1 and A2 which are corresponding
equilibria in system 1 and system 2 respectively. When a
trajectory of system 1 comes aroud A1 we begin by chang-
ing γ1 to stabilize A1 in a way as mentioned above. Then
the system (10) behaves as shown in Figure 7-(b). Next,
keeping this state, when a trajectory of system 2 comes near
A2 we change γ2 to stabilize A2 in the same way above.
Consequently, the system(10) is stabilized to the point A as
shown in Figure 7-(c).

4. Conclusions

In this work, we have presented a new state-feedback
method for controlling n × m-scroll hyperchaos. Time
derivative of states related to nonlinear functions are fed
back to stabilize type-IV saddles. By simulations, we con-
firmed that any equilibrium among the n×m equilibria can
be stabilized by sequentialy stabilizing each subsystems us-
ing the present method. And also, errors between actually
stabilized equilibria and the true ones are convinced to be
very small around 10−13.
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