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Abstract—We study the time for decay of informa-
tion about initial conditions in one-dimensional chaotic
maps that exhibit noise-induced chaos synchronization. We
found that the decay time becomes maximum at the onset
of noise-induced chaos synchronization.

1. Introduction

In a chaotic dynamical system, information about the ini-
tial conditions is gradually lost during its time evolution:
any localized initial probability distribution converges to
the invariant probability distribution, which is independent
of the initial distribution. The decay of information about
the initial conditions and, in particular, the time needed for
the decay, which we call the memory decay time, depends
on the system. For example, two very different types of the
decay processes were observed for the logistic map and the
Belousov-Zhabotinsky map in Refs. [1, 2].

In the present paper, we consider one-dimensional
chaotic maps with external noise inputs. It is known that
for some chaotic systems a common noise input to two in-
dependent and identical systems could give rise to the syn-
chronized motion of the two systems [3, 4]. We call this
phenomenon noise-induced chaos synchronization (NICS).
Toral et. al. constructed some one-dimensional chaotic
maps and demonstrated that for those maps the NICS oc-
curs when a bifurcation parameter exceeds a threshold
value [3]. The NICS in coupled chaotic maps was shown
to occur in Ref. [4]. In this study, we focus on noise-
synchronizable chaotic maps and investigate how the mem-
ory decay time depends on the bifurcation parameter that
controls the transition to the NICS. We show that the mem-
ory decay time is maximized at the transition point. This is
an example of an anomalous behavior which can occur at a
transition point to the NICS.

The present paper is organized as follows. In Sec. 2,
we introduce two chaotic map models and show that these
maps exhibit NICS. In Sec. 3, we show that for a noise-
driven chaotic map any two different initial probability dis-
tribution converge to the same time-dependent probability
distribution as the map is iterated. To characterize the de-
cay of information about the initial conditions, we intro-
duce the mutual information and define the memory decay
time. In Sec. 4, numerical results on the memory decay
time are shown. In addition, we discuss the reason why the
memory decay time is maximized at the transition point to
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Figure 1: Shapes of map functions (2) (solid line) and (3)
(dashed line).

the NICS. Conclusions are drawn in Sec. 5,

2. Chaotic maps and noise-induced chaos synchroniza-
tion

Our investigation is of one-dimensional chaotic maps of
the form

xn+1 = f (xn) + σξn, (1)

where xn ∈ R is the state variable depending on the time
index n, ξn represents the time-dependent noise uniformly
distributed in the interval [−1/2, 1/2] and uncorrelated in
time, and σ is the noise amplitude. As for the map function
f , we consider two examples. The first one is

f (x) = exp

⎡⎢⎢⎢⎢⎢⎣−
(
x − 1/2
ω

)2 ⎤⎥⎥⎥⎥⎥⎦ , (2)

where ω is a constant and we set ω = 0.3. This map was
proposed in Ref. [3] for demonstrating the NICS. The other
one is

f (x) = ax exp(−bx2 ) − c tanh(x), (3)

where a, b, and c are constants. We assume a = 5, b = 2,
and c = 1/2. The shapes of these maps are shown in Fig.
1.

Consider two trajectories xn and yn of map (1) with the
initial conditions x0 and y0 for the same realization of the
noise sequence ξn. Let the distance dn defined by dn =

|xn − yn|. The NICS is said to occur if for any (x0, y0) there
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exist an integer n0 such that dn (n ≥ n0) is smaller than a
given small threshold. To examine the NICS in maps (2)
and (3), we use the time average

d̄ = lim
N→∞

1
N

N−1∑
n=0

dn. (4)

The d̄ in general could depend on the realization of ξn and
on the initial conditions (x0, y0). Therefore, we numerically
calculate an average of d̄ taken over both ensembles. Figure
2 shows the average d̄ plotted as a function of σ. For each
map, d̄ decreases with increasing σ and there is a threshold
such that d̄ = 0 holds when σ is larger than it.

A more precise and useful criterion for the NICS is based
on the conditional Lyapunov exponent, which is defined by

λ = lim
N→∞

1
N

N−1∑
n=0

ln
∣∣∣ f ′(xn)

∣∣∣ . (5)

The synchronization can occur only if λ is negative [5].
The conditional Lyapunov exponent λ is the average of
ln | f ′(xn) | found by the trajectory. Slopes f ′ ∈ (−1, 1)
contribute to λ with negative values while slopes f ′ ∈
(−∞, 1) ∪ (1,∞) contribute with positive values. Equa-
tion (5) does not explicitly depend on ξn and is of the
same form between the noise-free (σ = 0) and the noisy
(σ � 0) cases. Therefore, λ seems not to be modified
by the presence of noise. However, the presence of noise
modifies the time evolution of the system, in other words,
there is noise dependence of λ through the trajectory points
xn, n = 0, 1, 2, . . .. For our examples of maps (2) and (3),
| f ′(x)| < 1 holds in the regions for large |x| as seen in Fig.
1. When the noise amplitude σ is small, |xn| does not take
large values and then the trajectory stays in the region of
| f ′(x)| > 1 for relatively long time, leading to a positive
value of λ. In contrast, as σ increases, |xn| comes to take
large values more frequently. This results in that the tra-
jectory stays in the region of | f ′(x)| < 1 for longer time.
Therefore, it is expected that λ decreases from positive to
negative as σ increases.

Figure 3 shows λ plotted as a function of σ for maps
(2) and (3), respectively. For each map, λ decreases as
σ increases and becomes negative when σ is larger than
a threshold σc. The σc are found as σc � 0.58 for map
(2) and σc � 2.7 for map (3), respectively. These thresh-
old values coincide with those obtained from d̄. From the
above results on d̄ and λ, it may be concluded that for both
of the maps (2) and (3) the NICS occurs when σ > σc.

3. Memory decay and mutual information

Consider the noise-driven chaotic map (1). Let ρ(1)
n (x)

and ρ(2)
n (x) be the probability distributions at time n with ar-

bitrary initial distributions ρ(1)
0 (x) and ρ(2)

0 (x), respectively.
We assume that the initial distributions have a finite width
and are not given by the Dirac’s delta function. For the
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Figure 2: Average distance d̄ for map (2) (solid line) and
map (3) (dashed line).
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Figure 3: Conditional Lyapunov exponent plotted against
noise amplitude for map (2) (solid line) and map (3)
(dashed line).

same realization of noise, ρ(1)
n (x) and ρ(2)

n (x) converge with
each other: i.e., ‖ ρ(1)

n (x)−ρ(2)
n (x) ‖ → 0 in the limit n→ ∞,

where ‖·‖1 represents the L1 norm. In fact, this convergence
property is observed for the maps (2) and (3). We note that
the probability distribution does not converges to a static
distribution but still depends on time n due to ξn except for
the case σ = 0. We give a rough explanation to this conver-
gence property. Given a noise sequence ξn, n = 0, 1, 2, . . .,
let Fn(x) defined by Fn(x) = f (x) + σξn. We consider
the Frobenius-Perron (FP) operator Pn associated with the
transformation Fn. The FP operator Pn : L1 → L1 is given
by

Pnψ(x) =
∑

y∈F−1
n (x)

ψ(y)∣∣∣ F′n(y)
∣∣∣ , (6)

where ψ(x) ∈ L1. The FP operator Pn has the contraction
property: i.e., ‖Pnψ‖1 ≤ ‖ψ‖1 for any ψ ∈ L1. We consider
the difference ∆n(x) = ρ(1)

n (x) − ρ(2)
n (x). By the contrac-

tion property of Pn, we have ‖∆n+1‖1 = ‖Pn∆n‖1 ≤ ‖∆n‖1.
Hence, we have

‖∆0‖1 ≥ ‖∆1‖1 ≥ · · · ≥ ‖∆n‖1 ≥ · · · . (7)
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It is expected that for this type of noise-driven map most
of the inequalities are strict in Eq. (7) and ‖∆n‖1 → 0 as n
increases.

Let ρn(x) be the probability distribution at time n, which
starts from an arbitrary initial distribution ρ0(x) having a
finite width. When the NICS occurs, any trajectory xn with
an arbitrary initial condition converges to a single trajec-
tory sn, i.e., |xn − sn| → 0 as n increases. Therefore, in
terms of the probability distribution, the NICS is character-
ized by the convergence of ρn(x) to the Dirac’s delta func-
tion δ(x − sn) with the time-dependent point sn of nonzero
probability. In the opposite case σ = 0, ρn(x) converges to
the invariant probability distribution, which is independent
of time. In the intermediate case 0 < σ < σc, ρn(x) is a
time-dependent and broadened distribution.

As mentioned above, ρn(x) becomes independent of the
initial probability distribution ρ0(x) for large n, provided
that ρ0(x) is not given by the delta function. This implies
that if the initial position x0 is measured within a finite pre-
cision, then this information about the initial position gives
no additional information about the position xn for large n.
For example, consider the two initial probability distribu-
tion ρ(k)

0 (x), k = 1, 2 given by

ρ(k)
0 (x) =

{
1/2ε if |x − ck | ≤ ε,
0 otherwise,

(8)

where ε > 0 is a small constant and c1 � c2. The ρ(k)
0 (x)

is the probability distribution centered at x = ck with the
small width 2ε. Let ρ(1)

n (x) and ρ(2)
n (x) be the probability

distributions at time n starting from ρ(1)
0 (x) and ρ(2)

0 (x), re-
spectively. For large n, ρ(1)

n (x) and ρ(2)
n (x) cannot be distin-

guished if they are measured with a finite resolution.

To quantify the decay of information about the initial
conditions, we use the mutual information between the ini-
tial positions of trajectories and their positions at time n.
Consider an interval I = [a1, a2] ⊂ R and divide I into
equal M subintervals. We denote the ith subinterval by Ii.
Let X ∈ {1, 2, . . . ,M} be the stochastic variable represent-
ing the index of subintervals Ii and PX(i) be the probability
of finding the initial position x0 in the ith subinterval Ii,
i.e., PX(i) = Prob[ x0 ∈ Ii ] =

∫
Ii
ρ0(x)dx. Similarly, con-

sider an interval J = [b1, b2] ⊂ R and divide J into equal
N subintervals. We denote the jth subinterval byJ j and in-
troduce the stochastic variable Y ∈ {1, 2, . . . ,N}, which rep-
resents the index of subintervals J j. We can consider the
joint probability PXY (i, j) defined by PXY (i, j) = Prob[ x0 ∈
Ii, xn ∈ J j ], where xn is the position at time n of the tra-
jectory with the initial position x0. The mutual information
between the stochastic variables X and Y is defined by

In = H(Y) − H(Y |X) (9)

=

N∑
j=1

PY ( j) log2 PY ( j)

−
M∑

i=1

N∑
j=1

PXY (i, j) log2
PXY (i, j)

PX(i)
, (10)

where H(X) and H(Y |X) are the entropy and the conditional
entropy, respectively. The mutual information In is the
quantity that measures the amount of information about xn

obtained by knowing the initial position x0. Because of the
convergence property of ρn, In decreases and approaches
zero as n increases.

We define the memory decay time T as the first instant
of time such that In becomes smaller than Ic, where Ic is a
small threshold. Since T depends on a given realization of
the noise sequence ξn, we use the average of T taken over
multiple realizations of ξn.

4. Numerical results for memory decay time

Figure 4 shows the memory decay time T plotted as a
function of σ for map (2). The numerical results are dis-
played for three different threshold values Ic = 0.10, 0.05,
and 0.01. In these calculations, we assumed that I = [0, 1],
M = 10, J = [−2.5, 2.5], N = 100, and ρ0(x) uniformly
distributed over I. The memory decay time T increases
as σ increases up to σ � 0.60, above which it decreases,
being maximized at σ � 0.60. This behavior is clearly
observed for all of the three curves shown in Fig. 4. The
value σ � 0.60 for the maximum point well coincides with
the transition point to the NICS, which is determined as
σc � 0.58 from the conditional Lyapunov exponent λ.

Figure 5 shows similar results for map (3). In these
calculations, we assumed that I = [−2, 2], M = 10,
J = [−4, 4], N = 100, and ρ0(x) uniformly distributed
over I. In this figure, the same behavior of T (σ) as in Fig.
4 is clearly observed: the memory decay time T increases
as σ increases up to σ � 2.7, above which it decreases,
being maximized at σ � 2.7. The value of σ for the maxi-
mum point coincides with the transition point to the NICS,
which is determined as σc � 2.7 from λ, also using the map
(3).

Based on the numerical results in Figs. 4 and 5, we may
conclude that the memory decay time is maximized at the
point of transition to the NICS. This is an example of an
anomalous behavior, which can occur at a transition point
to the NICS, and may be observed in the other chaotic sys-
tems exhibiting the NICS.

We give a qualitative explanation of the above numerical
observations. We first consider the case σc < σ. As shown
in Fig. 3, λ is negative and decreases with increasing σ
when σc < σ. This implies that the probability distribu-
tion ρn(x) shrinks to the asymptotic form δ(x − sn) more
rapidly as σ increases. Therefore, the memory about the
initial conditions also decays more rapidly as σ increases.
We turn to the case 0 ≤ σ < σc. In this range of σ, λ is
positive and increases with decreasing σ. This implies that
for smaller σ a local segment of ρn(x) tends to be mapped
to a more broad segment at each iteration. In other words,
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the map has a stronger mixing property for smaller σ. This
results in more rapid decay of the memory about the initial
condition as σ decreases. At the transition point σ = σc,
these two effects, the mixing effect and the synchroniza-
tion effect, are balanced and then the memory decay time
becomes long.
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Figure 4: Memory decay time plotted against noise ampli-
tude for map (2). Results for three different thresholds are
plotted: Ic = 0.10, 0.05, and 0.01.
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Figure 5: Memory decay time plotted against noise ampli-
tude for map (3). Results for three different thresholds are
plotted: Ic = 0.10, 0.05, and 0.01.

5. Conclusions

We studied the memory decay time in one-dimensional
chaotic maps that exhibit the NICS. It was shown that the
memory decay time becomes maximum at the transition to
the NICS. We gave a qualitative explanation to the reason
why the memory decay time is maximized at the transition
point.
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