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Abstract—In this study, we deal with a pattern classifi-
cation problem for extracting character string regions from
digital color documents that contain both character images
and other types of images. We applied supervised classifi-
cation methods to data set represented in the feature space.

By utilizing the characteristics that especially the neg-
ative data distribute as to have a cluster structure, we de-
vised a method using a mixture of classifiers. Additionally,
we propose a parametric feature that allows to improve the
discriminative performance by optimizing its own parame-
ters.

As a consequence, we have achieved a high classifica-
tion accuracy, which is as high as 96.5%, when applied to
various color documents even with complicated layouts.

1. Introduction

In this study, we deal with a pattern classification prob-
lem for extracting character string regions from digital
color documents which contain both character images and
other types of images.

Recently, several algorithms to extract character strings
from color documents have been proposed. Kasuga et al.[1]
extracted a region of character strings as a cluster of blocks
in the color space, based on the fact that blocks constituting
a single character region are likely to have similar colors.
However, this study was not of the supervised classifica-
tion; namely, they did not consider the decision problem
of the extracted character string regions. In addition, doc-
uments treated in their work were as small as a poster card
and had relatively simple layouts. Similarly, Hase et al.[2]
extracted character strings from color documents like cover
pages of magazines. However, they were not successful
in accurately discriminating character strings from back-
ground noises.

A system which is applicable to color documents with
complicated layouts and is able to detect character string
regions in high accuracy is therefore required.

2. Feature extraction and feature distribution

2.1. Feature extraction

We had produced a training data set and a test data set
for detecting character string regions from various digital
color documents.

We first extracted groups of connected pixels with simi-
lar colors in the horizontal and vertical directions, i.e., rect-
angles each of whose pixels have similar colors. These
rectangles are candidates for character string regions. A
human labeled each candidate in the sets, as positive or
negative, when he regarded it as a character string or not,
respectively. Although there may be mis-labels, we call a
true character string a positive datum or a negative datum
otherwise throughout this article.

Each candidate is next transformed into a 12-
dimensional feature vector each of whose components cor-
responds to the image contrast, sparseness of connected
pixels in circumscribed rectangles, the number of circum-
scribed rectangles, or so on. Here, a character string region
is composed by several circumscribed rectangles.

2.2. Feature distribution

We applied principal component analysis (PCA) in order
to visualize the distributions of positive and negative data
in the 12-dimensional feature space. We randomly selected
2,000 samples from each of the positive and negative data
sets, and normalized them so that each feature has the av-
erage of 0 and the variance of 1 in each of the subsets.

We then applied PCA in two ways.

1. Linear transformation by PCA is obtained based only
on positive data and then both of the positive and neg-
ative data are projected by the transformation.

2. Linear transformation by PCA is obtained based only
on negative data and then both of the positive and neg-
ative data are projected by the transformation.

Figure 1 shows cumulative contribution ratio of principal
components obtained in the two ways above.

The first four principal components of positive data can
explain about 80% of the distribution in the feature space,
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Figure 1: Cumulative contribution ratio

Figure 2: Scatter plot of the positive data and negative data

while six principal components are needed to explain the
comparative amount of negative data. This implies that the
distribution of the positive data has a smaller number of
effective dimensionality than that of the negative data.

In addition, when we employed the projection plane con-
sisting of the first and second principal components, posi-
tive and negative data had different distributions (Figure 2).
The cumulative contribution ratio of the first two principal
components was 71.9%.

Figure 3 shows the scatter plot of the positive and nega-
tive data projected on the two-dimensional plane consisting
of the first and fourth principal components obtained based
on the negative data. Similarly, Figure 4 shows the projec-
tion onto a plane consisting of the first and sixth principal
components.

From these figures, it is obvious that there are three
clusters, and each of the clusters has different distribution
between the positive and negative data sets. By examin-
ing factor loading values (data not shown), we found that

Figure 3: Scatter plot of the positive data and negative data

Figure 4: Scatter plot of the positive data and negative data

the three clusters have different characteristics of rectangu-
lar regions, namely, they correspond to horizontally-long
rectangles, vertically-long rectangles and squares. In ad-
dition, we can see that positive data are mainly either of
horizontally-long or vertically-long rectangles. We will
later show a classification method utilizing these facts for
the data distributions in the feature space.

3. Supervised Learning

First, we applied supervised classification methods by
ignoring the cluster structures found in section 2.2.

We prepared 208 digital color documents that included
19,588 positive data and 72,027 negative data; these data
sets were used for training. We also prepared 41 digi-
tal color documents that included 2,730 positive data and
35,495 negative data; these data sets were used for test (see
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for training for test
208 documents 41 documents

positive negative positive negative
19,588 72,027 2,730 35,495

Table 1: Number of documents and data
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Figure 5: Multi-layered perceptron’s ROC curve

Table 1). We normalized each feature so to have the aver-
age of 0 and the variance of 1 as a preprocess.

3.1. Multi-layered perceptron

We applied a multi-layered (two-layered) perceptron
(MLP) possessing one hidden layer.

The number of hidden units was determined by repeating
cross-validation ten times, in each of which training data
set consisted of 15,000 positive data and 15,000 negative
data selected from the training data set.

When we set 0.5 to the threshold for the MLP’s output,
the classification accuracy was 90.8%, 96.0%, and 95.6%
for positive test data, negative test data, and both test data,
respectively.

By changing the threshold value, the accuracy for the
positive and negative data varied, which is summarized as
the receiver operating characteristic (ROC) curve (Figure
5). From the ROC curve, one can see that when 95% accu-
racy for positive data is required, the accuracy for negative
data becomes 87%.

3.2. Support Vector Machines

We also applied ν Support Vector Classifier (νSVC)
[5][4] with a polynomial kernel:

k(x, x′) = 〈x, x′〉d. (1)

Degree of the polynomial kernel and the smoothness
hyper-parameter ν were determined by 10-fold cross val-
idation as d = 5 and ν = 0.12. As a result, the classification
accuracy was 91.8%, 95.8%, and 95.5% for positive test
data, negative test data, and both test data, respectively.

Expert Network
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Expert Network
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rectangles
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output
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Figure 6: Structure of mixture of experts

3.3. Mixture of Experts

We have shown in section 2.2 that character string re-
gions can be separated into three categories; horizontally-
long rectangles, vertically-long rectangles, and squares.
Because positive and negative data have different distribu-
tions in each category, these characteristics can be used for
constructing a classifier with higher accuracy.

By examining error cases, we found that the super-
vised classifiers, MLP and νSVC, produced many mis-
classificaion cases for square regions, because they likely
try to achieve high accuracy for vertical and horizontal rect-
angles due to their prominent features.

In order to achieve higher accuracy, we introduced a
Mixture of Experts (MoE) model [3]. MoE is a divide-and-
conquer algorithm in which the feature space is divided into
several subspaces and each classifier is trained to be highly
efficient in the subspace. In this study, we used an architec-
ture composed of three expert networks and a gating net-
work (Figure 6); the gating network is tuned by hard with
considering the three clusters described in section 2.2.

Let H denote the height of a character string region and
W the width. If (1 − H/W)2 < 0.1 then the datum is
processed by a classifier (expert network) to discriminate
squares, if H/W > 1 then the datum is processed by a clas-
sifier for vertical rectangles, or by the one for horizontal
rectangles otherwise.

4. Parametric feature

4.1. Parametric feature

Ordinarily, feature variables are selected arbitrarily so
that each of them has different distributions for positive and
negative samples. However, effectiveness of the variable
will not appear until the learning is carried out for a certain
supervised classifier. In particular, it is difficult to find out
an efficient feature for the samples which have been incor-
rectly classified by the current classifier.
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We therefore propose a parametric feature which pos-
sesses parameters as a flexible part of the feature. In this
study, we determined the parameter values by a random
search algorithm with cross-validation evaluation.

4.2. Rectangular Score

We devised a parametric feature called rectangular score
which is calculated with respect to circumscribed rectan-
gles constituting a character string region.

Let h denote the height of a circumscribed rectangle and
w the width, in a character string region with the height of
H, the width of W, and the area of A. Let a denote the
number of connected pixels in the circumscribed rectangle.

With the notations: v1 = h/H, v2 = h/w, v3 = w/h, v4 =

w/W, v5 = a/A, v6 = A/a , the rectangular score is defined
as the sum of weighted value:

S = v1w1 + v2w2 + v3w3 + v4w4 + v5w5 + v6w6 (2)

accumulated over all circumscribed rectangles in the char-
acter region. The rectangular score is used as an additional
feature for a character string region. The parameters in
the new feature, w1, . . . ,w6, were determined by random
searching with 4-fold cross validation so to have the highest
accuracy. After the optimization of the parametric feature,
training data sets were provided to a ν SVC with hyper-
parameters, d and ν, which were optimized by 10-fold cross
validation.

In the recognition phase, the gating network categorized
each test datum, and the expert network (ν SVC) for the
corresponding category output the predicted label.

As a result, the classification accuracy was 91.6%,
96.8%, and 96.5% for positive test data, negative test data,
and both test data, respectively.

Figure 7 shows examples of the character string re-
gions extracted by our MoE model after training. Ac-
cordingly, highly accurate recognition of character string
regions in color documents with complicated layouts has
been achieved by our method.

5. Conclusion

In this study, we developed a supervised classification
method to extract character string regions with high accu-
racy from color documents with complicated layouts. Be-
cause we found that the data constitute a cluster structure in
the feature space, we employed an architecture consisting
of three classifiers, i.e., a mixture of classifiers.

In addition, we devised a parametric feature whose pa-
rameters were optimized by cross-validation. By utilizing
this new architecture and new feature, the classification ac-
curacy has become as high as 96.5%.

We are planning to devise some other parametric features
to achieve further high accuracy in our future work. The
automatic acquisition of the gating network is in addition
remained as our future work.

Positive Negative ALL
MLP 90.8 % 96.0 % 95.6 %
SVM 91.5 % 95.8 % 95.5 %
MoE 91.6 % 96.8 % 96.5 %

Table 2: Results of supervised learning

Figure 7: Examples of recognition from color documents
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