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Abstract—Using the three-dimensional Bonhoeffer-van
der Pol equations, it is shown that chaotic and extraor-
dinarily slow oscillations appear near a Hopf bifurcation
point of an equilibrium point. Using the so-called slow-fast
decomposition analysis of singularly perturbed dynamical
systems, the generation mechanism of chaotic and slow os-
cillations is explored. In particular, the phenomenology of
birth of the slow oscillations can become different accord-
ing as the bifurcation of a subsystem is Hopf or saddle-
node.

1. Introduction

Neurons produce a characteristic waveform called spike
which is rapid increase and decrease of cell-membrane
voltage. Spikes are the main information carrier in nervous
systems and thus the analysis of the generation process of
spikes and of the inter-spike-intervals (ISIs) are very im-
portant. Recently, chaotic spiking and long ISIs (or slow
oscillations) in neurons attract much attention [5, 8, 10].
Guckenheimer and Oliva showed the existence of a chaotic
solution in the Hodgkin-Huxley (HH) equations of the most
famous neuronal model without any periodic inputs [9], al-
though the chaotic solution is highly unstable. On the other
hand, we have discovered more stable and generic chaotic
spiking in the slightly modified HH equations [1, 3]. We
have also shown that the chaotic solution frequently accom-
panies very long ISIs. The striking feature is that the tran-
sition from a stable equilibrium point to chaotic and slow
spiking is caused by a simple Hopf bifurcation. The pre-
cise mechanism of the chaotic and slow spiking, however,
has not yet clarified since the HH equations contain many
complicated nonlinear functions.

In the present paper, we show that similar chaotic and
slow spiking near a Hopf bifurcation can be observed in the
three-dimensional Bonhoeffer-van der Pol equations which
are much simpler neuronal model than the HH equations.
The generation mechanism of the chaotic and slow spik-
ing is explored by the so-called slow-fast decomposition
analysis of singularly perturbed dynamical systems. Espe-
cially, we show that the phenomenology of the generation
of chaotic and slow spiking is much dependent of the type
of bifurcation of a fast subsystem.

2. Long ISI in the Extended Bonhoeffer-van der Pol
Neuronal Model

Consider the extended Bonhoeffer-van der Pol (BVP) or
FitzHugh-Nagumo (FHN) equations [2, 11]:

dx
dt

= x − x3/3 − y − z + Iext, (1a)

dy

dt
= η(x − ay), (1b)

dz
dt
= ε(x − bz), ε � 1, (1c)

where x corresponds to a membrane potential and y a re-
fractory variable in terms of neuroscience. z is also a refrac-
tory or inhibitory variable since the increase of z eventually
operates to reduce x (but very slowly owing to ε � 1). If
the variable z is ignored, the equations (1) are the same as
the (two-dimensional) original BVP or FHN equations [6].
Although the only extension from the original BVP model
is the addition of the linear term z in (1a) and the linear
equation (1c), there are much differences in their dynamics:
The extended BVP equations with three variables can pos-
sess both bursting and chaotic solutions while the original
two-dimensional BVP equations have neither. The anal-
ysis of such complicated behavior of the extended BVP
equations has already been done [2, 11]. In the present pa-
per, however, we focus on the long ISIs near the generation
point of repetitive firing or spiking.

Figure 1 shows the inter-spike interval (ISI) as a function
of the parameter (external current) Iext. Both axes are de-
noted in a logarithmic scale and the value of Iext is denoted
as the deviation ∆ from its value at the Hopf bifurcation
point. Between the upper panels (a-i,ii,iii) and the lower
panels (b-i,ii,iii), the values of the parameters a, b and η
are different (the meaning of this difference will become
clearer later). From the left panels (a,b-i) to right panels
(a,b-iii), the value of ε is decreased.

The ISIs grow up as Iext decreases. Over a wide range of
Iext of Fig.1, ISI takes multiple values for each value of the
bifurcation parameter Iext; ISI varies spike by spike. This
variation is much larger in upper panels than in the lower
panels. Near the left part of panel (a-i), the ISI takes large
values over one hundred thousands. Since the constant ε
is just 0.01 and is not so small, the ISI over one-hundred
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Figure 1: ISI of the BVP equations in a log-log scale. (a) a = 3.0, b = 1.0, η = 0.13. (b) a = 1.5, b = 1.0, η = 0.1.
The values of ε are: (i) 0.01, (ii) 0.001, (iii) 0.0001. Following an initial transient of 10,000 time integration of (1), ISIs
are recorded during 500,000 time for each of equally spaced two thousands Iext values on the abscissa. The variable ∆ in
the abscissa is the deviation of Iext values from the Hopf bifurcation point. The values of Iext where the Hopf bifurcation
occurs are: (a-i) -0.488734, (a-ii) -0.460859, (a-iii) -0.454502, (b-i) -0.888645, (b-ii) -0.877411, (b-iii) -0.876014.

thousands is extraordinarily large. Figure 2(a) is an exam-
ple of the slow spiking shown in Fig.1(a-i). We can see that
the ISI varies from a small value as several thousands to a
large value as fifty thousands. Also, the sub-threshold os-
cillation (near x = −0.85) is apparently very chaotic; panel
(b) is the magnification of the sub-threshold oscillation.

In the panel (b-i) of Fig.1, ISI also grows up as Iext de-
creases although the ISI growth is not so large as panel (a-
i). The ISI value, however, is more than two thousands
and is also extraordinarily large since ε is just 0.01. Fig-
ure 2(c) is an example of slow oscillations with long ISIs
shown in Fig.1(b-i). In this case, the solution stays near a
resting potential (an unstable equilibrium near x = −1) for
a long time without sub-threshold oscillation and then the
amplitude of sub-threshold oscillation gradually grows up
and finally produces a spike. The solution of (c) is consid-
ered as a periodic solution differently from the chaotic one
of (a).

Note that, in Fig.1, the minimum value of the abscissa
becomes smaller as the value of ε decreases (from the left
panels to right ones). Since ∆ is the deviation of Iext from
its value at the Hopf bifurcation point, we can see that the
generation point of slow spiking approaches the Hopf bi-
furcation point as ε decreases. The maximum ISI values of
the upper panels of Fig.1 are much bigger than those of the
panels of the lower row, and apparently do not depend on
the ε value while the maximum ISI values of lower panels
do depend on ε.

The bifurcation structure of equilibrium points of the
BVP equations is very simple one (not shown here); the
number of the equilibrium point is unique for all values
of the bifurcation parameter Iext (when the values of the

other parameters were set as in Fig.1) and the stability
of the unique equilibrium point changes through a super-
critical Hopf bifurcation. In the HH equations, the Hopf
bifurcations were subcritical [1, 3]. Thus, the slow and
chaotic oscillations near a Hopf bifurcation point shown
in the present paper do not depend on the type of Hopf bi-
furcation and are considered to be very generic ones. In
the case of the upper panels of Fig.1, periodic orbits with
small amplitudes bifurcated from the Hopf bifurcation suf-
fer a period-doubling bifurcation and an additional cascade
of period-doubling bifurcations occurs. In the case of the
lower panels of Fig.1, all Hopf bifurcations are also su-
percritical and the periodic orbits bifurcated at the Hopf
bifurcation suffer a torus bifurcation. Slow spiking exists
after the torus bifurcation (bigger values of Iext). Thus, we
expect that some of the ISI variations shown in the lower
panels of Fig.1 correspond to the quasi-periodic behavior
rather than the chaotic one of the upper panels.

3. Slow-Fast Decomposition Analysis

In order to clarify the mechanism of the very slow spik-
ing, we make a so-called slow-fast decomposition anal-
ysis [7] in the followings. A system with multiple time
scales may be denoted as follows:

dx
dt

= f (x, y), x ∈ Rn, y ∈ Rm (2a)

dy

dt
= εg(x, y), ε � 1 (2b)

Equation (2b) is called a slow subsystem since the value
of y changes slowly while eq.(2a) a fast subsystem. The
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Figure 2: Example of slow spiking in the BVP equations. (a) a = 3.0, b = 1.0, η = 0.13, ε = 0.01, Iext = −0.477175. (b)
Magnification of the lower-left part of (a). (c) a = 1.5, b = 1.0, η = 0.1, ε = 0.01, Iext = −0.874.
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Figure 3: Slow-fast decomposition analysis of the BVP
equations. (a,b) Parameter values are the same as Fig.2(a).
(c,d) Parameter values are the same as Fig.2(c).

whole equations (2) are called a full system especially. So-
called slow-fast analysis divides the full system to the slow
and fast subsystems. In the fast subsystem (2a), the slow
variable y is considered as a constant or a parameter. The
variable x changes more quickly than y and thus x is consid-
ered to stay close to the attractor (stable equilibrium points,
limit cycles, etc.) of the fast subsystem for a fixed value of
y. The variable y changes slowly with a velocity εg(x, y)
in which x is considered to be in the neighborhood of the
attractor. The attractor of the fast subsystem may change
if y is varied. The problem of analysis of the dependence
of the attractor on the parameter y is a bifurcation prob-
lem. Thus the slow-fast analysis reduces the analysis of the
full system to the bifurcation problem of the fast subsystem
with a slowly-varying bifurcation parameter. In the case of
the BVP equations (1), the corresponding slow subsystem
is eq.(1c) and the remaining equations (1a,b) are the fast
subsystem.

Figure 3 shows the slow-fast decomposition analysis of
the BVP equations. Panel (a) corresponds to the case
of Fig.2(a). The Z-shaped curve denotes the equilibrium
points of the fast subsystem (1a,b) of the BVP equations as
a function of the slow variable z in which solid and broken

curves denote stable and unstable equilibrium points, re-
spectively. The stability of equilibrium points of the fast
subsystem changes by the saddle-node bifurcations SN1
and SN2. The dotted line is the z-nullcline dz/dt = 0. The
solution curve (with arrow symbols) of the full system of
the BVP equations is also superimposed. It is seen that the
solution of the full system switches between the upper and
lower branches of Z-shaped curve near the saddle-node bi-
furcation points SN1 and SN2 of the fast subsystem. The
upper branch corresponds to a generation of spike and, be-
fore the spike generation, the solutions stays near SN1 for
a long time which corresponds to a sub-threshold (chaotic)
oscillation. Panel (b) is the magnification of the neighbor-
hood of SN1 of (a) from which the solution is considered to
be a chaotic solution. Figure 3(c) shows the slow-fast anal-
ysis which corresponds to the solution of Fig.2(c). Differ-
ently from Fig.3(a) the solution of the full system leaves the
lower branch at the neighborhood of the Hopf bifurcation
point HB of the fast subsystem. Panel (d) is the magni-
fication of the departure or the switching point HB which
shows that this solution is a periodic orbit.

As is seen from Fig.3, the switching (which corresponds
to a spike generation) from the lower branch of the equi-
librium curve of the fast subsystem occurs in two different
ways: One is at the saddle-node bifurcation point and the
other at the Hopf bifurcation point of the fast subsystem.
In the former case, the sub-threshold (chaotic) oscillation
is the main part of the long ISI and in the latter case, a
longtime stay near the unstable equilibrium point of the full
system is the main part of the long ISI. This dependency of
the two different mechanisms of long ISI generation on the
switching types is same as the case of the HH equations [3].

4. Hopf Bifurcation in Singularly Perturbed Systems

Let us examine the difference of bifurcations of the fast
subsystem more quantitatively. Let x∗ denote the equilib-
rium point of the BVP equations (1). Then the Jacobian
matrix at the equilibrium point is




1 − x∗2 −1 −1
η −ηa 0
ε 0 −εb


 (3)

The condition so that this matrix could possess a pair of
pure imaginary eigenvalues (the necessary condition for the
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Hopf bifurcation of the full system) is obtained as:

(ηa + x∗2 − 1)η{1 + a(x∗2 − 1)} = O(ε) (4a)

ω2 ≡ η{1 + a(x∗2 − 1)} > 0 (4b)

where we assumed that ε � 1. On the other hand, the
characteristic equation of the fast subsystem is

λ2 + (ηa + x∗2 − 1)λ + η{1 + a(x∗2 − 1)} = 0 (5)

The condition (4a) corresponds to the two cases: (i) (ηa +
x∗2 − 1) = O(ε) or (ii) 1 + a(x∗2 − 1) = O(ε). As is seen
from eq.(5), in the singular limit of ε = 0, the case (i) and
(ii) correspond to the Hopf and the saddle-node bifurca-
tions of the fast subsystem, respectively. In the case (ii)
(the switching occurs at the saddle-node bifurcation of the
fast subsystem), the full system possesses a pair of pure
imaginary eigenvalues ±iω at the Hopf bifurcation point of
the full system where ω = O(

√
ε). Thus, the period of the

periodic orbit immediately after the Hopf bifurcation of the
full system becomes large as ε decreases. (Note that the
long ISIs shown in Fig.1 are much longer than this period.)
On the other hand, in the case (i), the period does not de-
pend on ε much since ω2 ≡ η{1+a(x∗2 −1)} is not so small
in this case.

Let us denote the eigenvalues of the matrix (3) by α and
µ ± iω. The real eigenvalue α at the Hopf bifurcation of
the full system is −(ηa + x∗2 − 1) + O(ε). In the case (ii)
that the switching occurs at the saddle-node point of the
fast subsystem, if there exists a Silnikov-type homoclinic
orbit near the Hopf bifurcation of the full system, then an
inequality |α/µ| > 1 holds since µ becomes small near the
Hopf bifurcation of the full system. Thus, in the case (ii), if
there is such a homoclinic orbit, then chaotic behavior will
appear near the homoclinic orbit by the Silnikov’s theory.
This is consistent with our simulation result of Fig.1(a-i)-
(a-iii), although the existence of such a homoclinic orbit is
not yet confirmed. On the other hand, in the case (i), the re-
lation between |α| and µ is not clear since |α| = |ηa+ x∗2−1|
is also small. In order to clarify this relation, the more elab-
orate analysis which incorporates the higher-order terms of
ε is necessary.

5. Discussion

We have shown that chaotic and very slow oscillation
can appear near a Hopf bifurcation of an equilibrium point
using the three-dimensional BVP equations. This phe-
nomenon is unexpected and interesting since the Hopf bi-
furcation is very local one while both the chaotic and slow
oscillations are global phenomena. It appears that this phe-
nomenon occurs in a generic way in singularly perturbed
systems, although the precise condition for the occurrence
are still under our investigation. Especially, the consid-
eration on the similarity and dissimilarity between the
smooth BVP equations considered here and the piecewise-
linearized BVP equations [4] may help for this problem.

The relevance, if any, to the so-called canards in R3 is also
an interesting future subject [12, 13, 14].
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