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Abstract —A new method is proposed to estimate the con-
nectivity among a network of weakly coupled dynamical
systems starting from multivariate measures. It resorts to
nonlinear modelling of the time series. With simulation
examples we demonstrate its adequacy in identifying the
direction and the strength of dependencies among observed
oscillators.

1. Introduction

The problem of inferring the nature of dynamical inter-
actions within a network of dynamical systems is a key
topic in several applied sciences. The identification of the
direction and the estimation of the strength of such cou-
plings are important toward understanding the mechanisms
of interactions and formulation of predictions. Usually, this
concerns the estimation of dependencies among multivari-
ate signals (measured time series). Most of the methods
assessing directional interdependencies has been proposed
for bivariate time series. Typical approaches are measures
based on information theory [1], mutual predictability [2],
instantaneous phase [3] and time series modelling [4]. The
common drawback of measuring the dependence only be-
tween two time series is the impossibility of removing the
potentially existing effects of a third (or more) series. Re-
cently, two methods, one based on graphical models [5] and
one based on mixed state space analysis [6], have overtaken
this problem. Whereas the former deals with the stochas-
tic properties of the observed processes, the latter fits into
a deterministic framework and, unfortunately, lacks a com-
pact description of the estimated interactions. The method
we propose here belongs to the field of multivariate deter-
ministic modelling and does not have this disadvantage. A
description of the method will be given in Sec. 2, whilst in
Sec. 3 numerical tests will be presented. Conclusions will
be given in Sec. 4.

2. Method

The method aims at identifying the connectivity matrix
of several coupled dynamical systems starting from the
measured time series. A reference model of a heteroge-
neous network of weakly coupled oscillators is assumed.
Let denote byΘ the state space of the dynamical system

represented by the whole network of oscillators. The refer-
ence model (here we assume time to be continuous, but the
case of maps is completely analogous) can be written as

Θ̇(t) = H(Θ(t)) + G(Θ(t)) + η, (1)

whereH(Θ(t)) is the dynamics of the oscillators network
without the mutual influences, which are in turn modelled
by the functionG, and finallyη is the so called “modelling
noise”. Under our hypothesis of weak coupling,G can be
approximated with a linear dependence

G(Θ(t)) ' KΘ(t), (2)

where the matrixK models the connectivity within the net-
work.

Let us suppose to have a scalar observable from each
oscillator, then we can proceed to the estimation of the ref-
erence model in three steps.

2.1. First Step — State Space Reconstruction

Let denote by



u0
...
ut
...

uN−1



ut ∈ RM (3)

the multivariate vector of the measured time series; where
M is the number of observed variables,i.e. the number of
oscillators, andN is the number of available samples. By
assuming that a local oscillator is behind each scalar vari-
able, at timet the state spacexi(t) of the generic oscillator
i can be reconstructed from

ui
t = u(xi(t)) + υt, (4)

whereu is some measurement function andυt the observa-
tion noise. The technique we use for this issue is the Prin-
cipal Component Analysis [7], since it is robust regarding
noise. We will denote asmi the estimated state space di-
mension of the generic oscillatori.
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2.2. Second Step — Self Modelling

By assuming that the coupling term in Eq. (1),i.e.
G(Θ(t)), is small with respect toH(Θ(t)) such that it can
be confused with the modelling noise,i.e. η, for every lo-
cal oscillatori a model is identified on the base of the solely
local measures of the oscillator at issue; we call it “self-
model” and we will denote it asf s

i . This is done in two
sub-steps.

First we obtain the best linear estimation (in a least
square sense) off s

i , basically by Moore-Penrose inversion.
This corresponds to have

f s
i (xi(t)) = Axi(t) (5)

whereA represents the kernel of the image ofxp
i (t) (the

trajectory of the oscillatori up to timet) and the prediction
errorψ given by

xi(t + 1)− f s
i (xi(t)) = ψ (6)

lays in the linear null space ofxp
i (t) (the prediction error in

Fig. 1).
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Figure 1: The pointxi(t + 1) of the trajectory at timet + 1
(here we assume the prediction step equal to one sample)
lays in the state spaceRmi . Its linear prediction ˆxi(t + 1)
given the past trajectory from initial timet0 to timet lays on
a linear subspace ofRm, V = Image[xp

i (t)]. The difference
betweenxi(t + 1) and the predicted ˆxi(t + 1) lays in the null
space ofxp

i (t), which is orthogonal toV by definition.

If this prediction error does not result to be a stationary
gaussian process, we proceed into the second sub-step us-
ing Radial Basis function (RBF) for modelling the residual
ψ. RBFs [8] provide the global, empirically based, nonlin-
ear modelψ̂ of the form

ψ̂(xi(t)) =

j=Nc∑

n=1

wnφ(‖xi(t) − ξn‖) (7)

whereφ(·) is the radial basis function,ξn are centres,wn the
model parameters.

Finally, the identified self-modelf s
i is given by

f s
i (xi(t)) = Axi(t) + ψ̂(xi(t)). (8)

2.3. Third Step — Cross Modelling

The global linear model (connectivity matrixK in
Eq. (2)) of the dynamical interaction among the local os-
cillators is identified starting from the modelling residual
of every f s

i , i.e. the dynamics unjustified by the local self-
models.

Let us denote withXc,i the reconstructed state space of
all the oscillators except thei − th at issue,i.e.

Xc,i(t) =



x1(t)
...

xi−1(t)
xi+1(t)
...

xM(t)



(9)

An estimate ofKi , the linear model justifying the coupling
among the oscillatori and all the others, is computed as the
minimum norm pseudo-inverse satisfying

xi(t + 1)− f s
i (xi(t)) = K̂iXc,i(t) + ζi , (10)

whereζi lays in the linear null-space ofXp
c,i(t) and repre-

sents the total residual modelling noise for the oscillator at
issue.

Finally, the estimated global connectivity matrixK̂ is ob-
tained as

K̂ =



K̂1
...

K̂i
...

K̂M(t)



(11)

where theK̂i have been padded with a matrix of zeros at
the suitable position.

The computed matrix̂K consists of blocksCi, j

K̂ =



Ø . . . . . . C1,M

...
. . .

. . .
...

... Ci, j . . .
...

CM,1 . . . . . . Ø


(12)

of dimensionmi × mj . Every sub-matrixCi, j represents
the strength of the estimated coupling from the state vari-
ables of oscillatorj to the ones of oscillatori. To extract
the topology of the influence graph among the oscillators,
we coalesce the dependencies between the single state vari-
ables by means of the 2-norm estimation of every sub-
matrixCi, j .
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3. Numerical Examples

The aim of this section is to show two numerical tests.
They have been considered for the assessment of the effec-
tiveness of the method previously presented.

As first example, we studied an unidirectionally coupled
system composed of two Lorenz oscillators (see Fig. 2).
Assuming that oscillator 1 drives oscillator 2, the model
for the Lorenz oscillator 2 is described by



ẋ2 = σ2(y2 − x2) + ηx2,

ẏ2 = r2x2 − y2 − x2z2 + c2,1(y1 − y2) + ηy2,

ż2 = x2y2 − b2z2 + ηz2,

whereσ2, r2, b2 are parameters,η j i is modelling random
noise (set in the simulations to the reasonable strength of
1% of the energy of the right hand side along the attrac-
tor), and the last term in the second equation has been
introduced for modelling a (linear) coupling of strength
c2,1. Similarly, the driver’s model is described by an au-
tonomous (i.e. c1,2 = 0) system of equations



ẋ1 = σ1(y1 − x1) + ηx1,

ẏ1 = r1x1 − y1 − x1z1 + ηy1,

ż1 = x1y1 − b1z1 + ηz1.

The differential equations were iterated using the Heun al-
gorithm [9] with ∆t = 0.005. This was checked to yield
numerically stable results. In order to eliminate transients,
the first 104 iterations were discarded. All time sequences
had lengthN = 103. In order to check for repeatability and
stability of results, all computations were repeated several
times with different initial conditions. We assumed as mea-
surement the thirds state variables,z1 andz2, with an ob-
servational noise of 1% of the signal energy (20db SNR).
The state space of every oscillator was reconstructed using
Principal Component Analysis with embedding dimension
m = 3, time delayτ = 0.02 and window lengthw = 1.
Within the 2nd step of the identification method, the Bera-
Jarque parametric hypothesis test for composite normality
was used and 800 points were used for the RBF’s learn-
ing (using a freely available Matlab package [10]). Before
the 2-norm estimation, the values of coupling between the

21

c2,1

Figure 2: Two Lorenz oscillators (labelled 1 and 2) unidi-
rectionally coupled. The oscillator 1 acts as driver (master)
and 2 as response (slave). In the text, we calledxi , yi , zi

(i = 1,2) the state variables of the master and slave system,
respectively.

state variables under some suitable relative threshold were
set to zero. An estimate of the standard deviation of the ob-
tained coupling values was performed with a generalized
cross-validation criterion [11].

For the parameters considered here, the method is able to
detect successfully the unidirectional character of the cou-
pling. The result is showed in Fig. 3.
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Figure 3: Plot of the estimated mean± standard deviation
values of the couplings ˆc2,1 (red) and ˆc1,2 (blue) as a func-
tion of the true unidirectional strength couplingc2,1. The
wrong estimation atc2,1 ≈ 0,21 is due to a bifurcation oc-
curring in the oscillator 2 when changing the coupling. Fur-
thermore, it should be noted that the variation of this value
is bigger than the other ones. This confirms the reliability
of the estimated coupling strengths.

In a second example, we have considered a frequently
used test: three noisy Lorenz oscillators with unidirectional
coupling, arranged in a ring as showed in Fig. 4.

The settings for simulating the temporal behavior of the
oscillators and for the identification are the same described
in the previous example. We set the coupling strength to
the constant values reported in Tab. 1. By taking into ac-
count the values reported in Tab. 2, the global-wise estima-
tion of the connectivity correctly reveals the direction and
the entity of interaction in the ring structure. On the con-
trary, using the method for performing a pair-wise analysis
as generally done [3], non-existent connections, due to in-
direct contributions, rise (the elementsk̂3,1 and k̂1,2 of the
matrix K̂ reported in Tab. 3).

Finally, we can conclude that the two reported exam-
ples clearly show that the method is effective in the estima-
tion of both directionality and intensity of the connectivity
graph, overcoming the difficulties of a pair-wise analysis.
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
0 0 1.417

2.075 0 0
0 2.123 0



Table 1: The connectivity matrixK assigned in the ring
structure.


0.00 0.00 0.791
1.719 0.00 0.00
0.00 1.974 0.00

 ±


0.00 0.01 0.032
0.090 0.00 0.01
0.01 0.032 0.00



Table 2: The estimated connectivity matrix̂K in the ring
structure obtained with the global-wise estimation. Mean±
standard deviation are reported.


0.00 0.516 0.912
1.623 0.00 0.00
0.184 1.683 0.00

 ±


0.00 0.037 0.046
0.092 0.00 0.01
0.008 0.096 0.00



Table 3: The estimated connectivity matrix̂K in the ring
structure obtained with the pair-wise estimation. Mean±
standard deviation are reported.

4. Conclusions

A new method has been proposed for inferring the
connectivity matrix of several coupled dynamical systems
solely from measured time series. Its capability to discrim-
inate between direct and indirect coupling among the ob-
served dynamical systems has been demonstrated. There-
fore, this method has potential applications in several ap-
plied science fields where inferring the nature of dynami-
cal interactions is a key problem. For instance, as in pop-
ulation biology is important to know how different popu-
lations interact over a given territory, at the same time in
neuroscience a key question is how all the single neurons

2,1
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2
c

cc

3,2

1,3

Figure 4: Three oscillators arranged in a ring. The unidi-
rectional (clockwise) coupling is successfully revealed by
a multivariate estimation, while a pairwise estimation gives
rise to fake connections. See text for details.

treating a certain stimulus make a sense in a whole. Inves-
tigations in visual stimuli induced electroencephalographic
signals are underway.
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