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Abstract—This paper presents novel chaotic spiking os-  (a)

cillators consisting of two capacitors, two signum VCCSs ip = 13sgn(vy) iz = 18N (vy — V)
one voltage-controlled switch. The circuit equation has | N S
piecewise constant vector field and piecewise linear tra- _|_ i I Wy
jectory: it is well suited for theoretical analysis. We can V=G %> Sg w—G n T
clarify parameters condition for generation of chaotic or ~ B T E
periodic phenomenon. Using a simple test circuits typical _ _
phenomena can be confirmed experimentally. (b I = Lason (v,) 12 = 12500 (V1 ~V2)
e *
1. Introduction Vi =VT'“J': VL.== G v=—=G
. o o . ET _
Synthesis and analysis of simple chaotic circuits are im-
portant for understanding interesting nonlinear phenomena . R
and various chaotic circuits have been studied [1]-[3]. We Figure 1: Circuit models
have also studied simple autonomous chaotic circuits based
on integrate-and-fire switching [4] [5]. Such circuits are re-
ferred to as chaotic spiking oscillators and relate deeply to dv;
integrate-and-fire neuron models. The circuits can be de- Cigp = l2san(va - Vv2).
veloped into pulse-coupled neural networks having various dvs for S=off
applications including image segmentation [7] [6]. Cogr = l1san(va). 1)

This paper presents a novel class of simple chaotic spik- 1 for v>0
ing oscillators having piecewise constant (PWC) charac- sgn(v) = { -1 forv<O.
teristics. The oscillator consists of two capacitors, two ) o
signum voltage-controlled current sources (VCCSs) for theVe consider 4 switching rules. Rule AV reaches the
PWC characteristics, and one voltage-controlled switch fdfésholdvr, Siis closed and, is reset to the base voltage
integrate-and-fire dynamics. We then consider four kinds (K = 1in Fig. 1 (a) ). Rule B: Iivy reachesvr, S'is
of basic switching rules which can cause for interestin{[Iosecj andz is reset toE (k = 1in Fig. 1 (b)). Rule C:
chaotic or periodic phenomenon. The circuit equation has V2 feachesvr, S is closed andy is reset toE (k = 2
piecewise constant vector field and piecewise linear trd? Fi9- 1 (0)). Rule Dt Ifv; reaches/r, S'is closed and
jectory: it is well suited for theoretical analysis [8]. The Vi IS reset toE (k = 2in Fig. 1 (a) ). For simplicity let
embedded 1D return maps are piecewise linear and can§§ Switching be instantaneous and let continuity property
described explicitly. Using the map we can clarify parame®! 0PPOSite capacitor voltage be held. Using the following
ters condition for generation of each phenomenon. The tedimensioniess variables and parameters for rules A and B:
circuits are implemented easily using operational transcon- It v Vo Cilh E E

ifi i :—’X:—’ :—’a_—’ =—, =
ductgnce ampllfliers (OTASs) and typical phenomena can ber Cve v y vy Cals Oa vy Qo v,
confirmed experimentally.

Equation (1) and the rules A and B are transformed into

2. Circuit modelsand equation Equation (2) and Equation (3).

dx
Fig. 1 shows the objective circuit models. Each circuit dr Sgn(x — ay).
has two capacitors, one voltage-controlled swigland dy for S= off (2)
two nonlinear voltage-controlled current sources (VCCSs). P sgn(x),
The VCCSs have signum characteristics and capacitor volt-
agev; can vibrate expansively. If switch is open all the Rule A: (X(t+), Y(T+)) = (Ga, Y(7)) if x(r) =1
time, the circuit dynamics is described by Equation (1). Rule B: X(t+), y(t+)) = (X(1), 0p) if X(r) =1 (3)
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Figure 2: Typical attractorsa(= 4.7). (a)ga = -0.2, (b) :
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Using the following dimensionless variables and parame- ¢ a n b
ters for rules C and D 20
ot oA v, Gilh  EaE
T_CZVT’X_ VT’y_VT’a_CZIZ’qC_VT’qd_VT' yn+l
Equation (1) is transformed into Equation (2) and the rules b)
C and D are transformed into Equation (4). Js
Rule C: &(7+),¥(7+)) = (X(7),qc) if y(r) =1 (@)
Rule D: (X(7+), Y(r+)) = (da Y(7)) if y(r) = 1 a0

. . -20 Y 0 2.0
It should be noted that the dimensionless system has two d Yn

parametera andg (i € {a, b, ¢, d}) for each switching rule.

For simplicity we consider the case> 1 hereafter. Fig. 2 Figure 4: Return maps for rule AE 4.7). (2)ga = —0.2,
shows typical chaotic attractors by rules A and C. (b) ga = —0.68.

3. Analysis
returns toL after intersecting (respectively, without inter-

RuleA for ga < 0 In order to derive a 1D return map, secting) the lin@y = x. Since the trajectory is piecewise
let L = {(x,y)Ix = O} ( see Fig.3) and let a pointdnbe |inear the return map is described by
represented by itg-coordinate. Since the trajectory start-
ing fromL returns taL at some positive time we can define _aLlyn for yn > Ya
the 1D return magf; from L to itself. Lety, andyn.1 be ; g;} -
the staring and return points dn respectively. The dy- 1lyn) =1 _ (Vn+1-0qq) forYa>yn> Yy, ®)

PR . -1

namics is simplified into iteratiopn1 = f1(yn). LetYa e L y?+ 1+ 0a foryn < VYq.
be a point such that a trajectory starting fréippasses the
intersection of two linex = 1 anday = x. LetYq € L  Fig. 4 (a) and (b) show return maps corresponding to the
be a point such that the trajectory starting frfpnhits the  Fig. 2 (a) and (b), respectively. Since the return map is
thresholdx = 1 and jumps to the intersection of two lines piecewise linear, we can obtain the following results.
X = (a anday = x. These points are given by = %‘1 and (R1) If g4 < —1 then the trajectory diverges.
Yg = £-1. Asshown inFig. 3left, if, > Yathetrajectory  (R2) LetYp = f1(Ya), Ye = fi(Yp) and letd; = [Ye, Yi]
starting fromy,, returns toL without reaching the threshold as shown in Fig.4(a). If & g, > £2 thenf;(J1) € J; and
x = 1. If Ya > yn > Yy (respectivelyy, < Yy), the trajec- |diyf1(yn)| > 1 onJ; are satisfied. In this case the system

tory reaches threshold= 1, jumps to the base = g, and generates chaos [5].

522



1 Small )
a | 2| chaos @)
®
«Q
® 0
9] Chaos
®
0 1
-1 0 1
% -20
-20 0 X 20
Figure 5: Parameters conditions for rule A n

2.0
X \ 4
@) ® Y n+1

A Y i 4
N

Figure 6: Trajectories for rule B. (@= 4.7, g, = 0.4, (b)
a=47, q,=-0.2.
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Figure 7: Return maps at switching rule £ 4.7)
(@) = —0.16, (b)j = 0.2.

(R3) If £2 > ga > —1 thenfy(Yy) > Yq and f1(Yg) <

Y, are satisfied. In this case there exists an intedyat

[ f1(f1(Yq)), fa(Yq)] in the right-hand side of ; and f1(J2) C

N and|diyf1(yn)| | > 1 onJ, are satisfied: chaotic attractor

exists onJ,. We refer to this case as "small chaos”. = g.andy = 1x. These points are given b = &L and
Fig.5 shows parameters conditions for (R1) to (R3). y qc(a_l)(zq A4 i p. 9 atl
Rule A for 1> g, > 0:  As shown in Fig.3 definitions = %1 - Inalikewise manner as rule A, we can

of Ya, Yq andys are the same as the cage< 0. Fory, > Yq defmg the 1[_) return map from to itself. Forgc < O the

we can define the 1D return map in the same manner as {R@p is described by

caseq, < 0. Fory, < Yy the trajectory hitsx = 1 and _a+l

a point such that the trajectory starting frofg passes the
intersection of two liney = 1 andx = 0. LetXyq € M be

a point such that the trajectory starting frofg reaches the
thresholdy = 1 and jumps to the intersection of two lines

) ’ ——Xn for x, < Xa
jumps to a poiny, on X = ga. In this case there exists a  x,.; =gi(x,) = aajrli (7)
point onL such that the trajectory starting from it passes —Xp—1-qc forx, > Xy
Ya. For convenience let this point lyg,1. The return map a-1
is described by Equation (6). For 1> g; > 0 the map is described by
a+1
atl  forynzYa Tas1 for X < Xa

Ta-1
Y1 = fZ(yﬂ) = Yn+1+0a for Yq > Yn > Y4, (6)

a-1
f— f— 8
Va+1-Ca fOryn <Yy Xni1 =02(Xn) = —1(qc—1)+xn for Xa< Xn<Xq (8)

a+1
This map can generate chaos for- 1 and 0< g, < 1 mxn —1-qc forx, =Xy
(only (R2) is satisfied).
Rule B: Fig. 6 shows trajectories by rule B. df, > % Fig. 7 (a) and (b) show return maps corresponding to

the trajectory jumps to the certain point {f) whenever it Fig.2 (c) and (d), respectively. Then we have
reaches the threshold = 1 as shown in Fig. 6 (a). The (R4)If gc < 221(24 — 1) - 1, the trajectory diverges.
system exhibits periodic attractor. df, < % the trajectory (R5) If gc > g%} g%} —1)-1, the system exhibits chaos.
can not move if it reaches = 1 and jumps to (1g,). This Fig.8 shows parameters conditions for (R4) and (R5).
is the impasse point on the base line.

Rule C: System behavior for rule C is similar to rule  RuleD: Fig. 9 shows trajectories for rule D. Behavior
A as suggested in Fig. 2. L& = {(x,y)ly = 0} and let in this case is similar to rule B and can be summarized as
point onM be represented by:coordinate. LeX, € M be  the following: If qq < 0 then the system exhibits periodic
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1 i1= l1sgn(va) i2=l2sgn(vi—v2)
= Divergence
a :
Chaos
0
-1 0 q. ! Figure 10: Implement circuit of switching rule A/t =

0.5V, 11 =1, = 0.07mA,C; = 47nF,C, = 10nF.
Figure 8: Parameters conditions for rule C
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Figure 9: Trajectories for rule D. @)= 4.7, qq = -0.2,
(bya=47, g4=0.3

attractor passing through the poimfy(1), and ifgq > 0

then the pointdg, 1) is to be the impasse point. ) )
pointde. 1) P P Figure 11: Laboratory experimenta = 4.7. (a)E =

4. Experiments -0.1V (g = -0.2), (b) E = 0.94V (gp = 04), (c)E =

0.5V(gc = 0.2), (d)E = -0.1V(qq = -0.2).
Fig.10 shows an implementation circuit for rule A where

VCCSs are realized by OTAs. If capacitor voltaget)

reaches the thresholg, the comparator (COMP) triggers [2] A. S. Elwakiland M. P. Kennedy, "Construction of Classes of
the monstable multivibrator (MM) to output pulse signal  Circuit-Independent Chaotic Oscillators Using Passive-Only
that controls the switch andv; (t) is reset to the base volt- ~ Nonlinear Devices, " I[EEE Trans. Circuits Syst. 1, vol. 48, pp.
ageE. The other switching rules can be implemented in a 289-307, 2001.

likewise manner. Fig. 11 shows the typical attractors corl3] N. F. Rulkov and A. R. Volkovskii, "Generation of Broad-

firmed experimentally. Ba_nd Chaos Using Blocking Oscillator, ” IEEE Trans. Cir-
cuits Syst. |, vol. 48, pp. 673-679, 2001.
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the return map is a}lgo piecewise linear. _Q5|ng the return Circuits, " IEEE Trans. Neural Networks, vol. 13, pp. 92-100,
map, we have clarified parameters conditions for genera- g5
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and consideration of engineering applications.
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