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Abstract—In this paper we present an extremum seek-
ing control law for nonlinear systems. This is a modifica-
tion of Krstić type approach. It is equipped with an ac-
celerator to the original one aimed at achieving the maxi-
mum operating point more rapidly. This accelerator is de-
signed by making use of a polynomial identification of an
uncertain output map and Butterworth filter to smoothen
the control. Numerical experiments show how this mod-
ified approach can be well in control of Monod model of
bioreactors.

1. Introduction

An extremum seeking control problem is classified in a
category of adaptive control problems. Mainstream meth-
ods of adaptive control deal only with regulation to known
set points or reference trajectories. In many applications,
however, the set point should be selected to achieve a max-
imum of an uncertain output map for nonlinear systems.
This is one of typical problems of the extremum seeking
control[1–6,9]. This kind of control problem can be shown
in maximizing the yield of a desired product in chemical
engineering and biotechnology[5,6,9], adjusting the spark
ignition angle of an automotive engine[2], controlling a
chip refiner motor[3], and so on. In all applications, it is
desirable to have rapid response to the maximum operating
point.

For this extremum seeking control problem, Krstić et
al.[4,5,9] developed a feedback mechanism without requir-
ing the knowledge of a plant dynamic equation from the
concept of frequency domain. This Krstić approach is easy
to implement to practical systems, but needs a longer time
to reach the best operating point.

Another approach was presented by Takata et al.[6] from
the concept of time domain using the modern control theo-
ries. This has the strongpoint of quick response, but needs
the knowledge of a dynamic equation.

In this paper we consider a modification of Krstić ap-
proach which is equipped with an accelerator for the ex-
tremum seeking control problems. It is aimed at shortening
a period until the optimal operating point. This accelerator
is designed by making use of Chebyshev polynomial iden-
tification to estimate the uncertain output map, and Butter-
worth filter to smooth down the violent movement of con-

trol amounts. The proposed approach is applied to Monod
model of bioreactors. Simulation results show that this en-
ables to regulate the object around the best operating point
speedily.

2. Problem Statement

We consider single-input-single-output systems of the
form:

ẋ(t) = f (x(t), α, u(t)) (1)

y(t) = h(x(t), u(t)) (2)

where • = d/dt, x ∈ Rn is the state, u ∈ R is the control,
y ∈ R is the output, α ∈ RL is the unknown parameter, and
f : Rn+L+1 −→ Rn and h : Rn+1 −→ R are the unknown
nonlinear smooth functions.

The performance function J is assumed to be the output
equilibrium map such that

J(u) = h(z, u) (3)

where ż = f (z, α, u) = 0, z ∈ Rn .
The aim of this problem is to develop a feedback mech-

anism which enables to operate around the maximum point
of the performance swiftly.

3. Extremum Seeking Control by Krstić Approach

Krstić approach could be designed from the follow-
ing basic idea and its feedback scheme is shown in Fig.1
(see[4][5][9]).

It is impossible to conclude that a certain point is a max-
imum without visiting the neighborhood on both sides of
the maximum. For this reason, this scheme employs a slow
perturbation βsinωt which is added to the control signal û.
The persistent nature of βsinωt may be undesirable but is
necessary to maintain a maximum in the face of changes in
functions f and h.

The perturbation βsinωt will create a periodic response
of y. The high-pass filter s/(s + ωh) would eliminate the
DC component of y. Then, the product of the sinusoids
βsinωt produces β2/2(1 + cos2ωt), and its DC component
ξ ∝ β2/2 is extracted by the low-pass filter ωl/(s + ωl).
The sign of this ξ provides the direction to the integrator
û = Kξ/s moving û towards the optimal operating point
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u∗. By this way, the output y gradually approaches to the
maximum output value y∗ = J(u∗).

Although it has the merit of easy implementation to prac-
tical systems, this Krstić approach usually needs a longer
time to reach the optimal point u∗, namely, the maximum
output y∗. We will consider a modification of this controller
to shorten a reaching time in the next section.

4. Controller with Accelerator

Our feedback scheme is added an accelerator to the orig-
inal structure and is shown in Fig.2.

Let ∆ be a sampling period, so y(k∆) and u(k∆) are sam-
pled values at time t = k∆ (k = 1, 2, 3, · · ·). The search for
the optimal point u∗ is repeatedly executed at renewal times
t = �T = �M∆ (� = 1, 2, 3, · · ·) where T is a renewal cycle
period and M = T/∆ is a natural number.

Let us collect the data {y(k∆)} on the assumption that the
output y(k∆) is near to the performance value J(u(k∆)), be-
cause the state x approaches to the stable equilibrium point
z as the control progresses:

y(k∆) = h(x, u(k∆)) ≈ h(z, u(k∆)) = J(u(k∆)).

Thus it follows that

y(k∆) = J(u(k∆)) + w1(k∆)

where w1 is error.

At t = �T = �M∆, the following procedure shall be
executed.

4.1. Polynomial Identification

We interpolate the performance function curve via
Chebyshev polynomials [6][7] up to the N-th order using
the data {y(k∆), u(k∆) : k = k�(start), · · ·, �M}.
Let the control domain be D = [umin, umax]. To transform
into a standard domain D0 = [−1, 1], introduce a normaliz-
ing function:

η(u) =
(u − m)

p
(4)

where η : D→ D0, m = (umax+umin)/2, p = (umax−umin)/2.
The Chebyshev polynomials are then defined by

Φr(u) = cos(r · cos−1 η(u))

(r = 0, 1, 2, · · ·)
or

Φ0(u) = 1

Φ1(u) = η(u)

Φ2(u) = 2η2(u) − 1

Φ3(u) = 4η3(u) − 3η(u)

Φ4(u) = 8η4(u) − 8η2(u) + 1

Φ5(u) = 16η5(u) − 20η3(u) + 5η(u)
... (5)

Assume that the performance function is described at t =
�T by

J(u) = Φ(u)T C� + w2

= C�0 +C�1Φ1(u) +C�2Φ2(u) + · · · +C�NΦN(u)

+w2

so that
y = J(u) + w1

= Φ(u)T C� + w

where

C� = [C�0,C�1,C�2, · · ·,C�N]T

Φ(u) = [1,Φ1(u),Φ2(u), · · ·,ΦN(u)]T

w = w1 + w2

w2 is error.

By applying the least squares method, the coefficient C�
is estimated as

Ĉ� =


�M∑

k=k�(start)

Φ(u(k∆))Φ(u(k∆))T


−1 

�M∑
k=k�(start)

Φ(u(k∆))y(k∆)


(6)

in which the squares error:

�M∑
k=k�(start)

w(k∆)2 =

�M∑
k=k�(start)

(y(k∆) −Φ(u(k∆))T C�)2

is minimized.
Therefore, we approximate the performance function at

t = �T as

Ĵ�(u) = Φ(u)T Ĉ�
= Ĉ�0 + Ĉ�1Φ1(u) + Ĉ�2Φ2(u) + · · · + Ĉ�NΦN(u).

(7)

4.2. Estimation of Maximum Point

Let u∗� be estimate of the optimal operating point u∗ at
t = �T .

We search for the maximum point of the performance
function Ĵ�(u) by a step-by-step method as follows.

Ĵ�(u
∗
�) = max

u
{Ĵ�(u) : u = p(2 j/L − 1) + m,

j = 0, 1, 2, · · ·, L} (8)

where L is the number of division of D0 = [−1, 1].
In a special case of N = 2, the u∗� is analytically solved

as follows.
From Eqs.(4) and (5), Eq.(7) becomes

Ĵ�(u) = Ĉ�0 + Ĉ�1(u − m)/p + Ĉ�2(2(u − m)2/p2 − 1) (9)

so that ∂Ĵ�(u)/∂u = 0 derives

u∗� = m − pĈ�1
4Ĉ�2

. (10)
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4.3. Smoothing by Butterworth Filter

Note that û = Kξ/s is the principal control of Krstić type
in section 3.
Let µ̂(�T ) be the difference between u∗� and this principal
control û(�T ) :

µ̂(�T ) = u∗� − û(�T ) (at t = �T ). (11)

To smooth down its violent movement, we introduce
Butterworth filter[8] reprersented by

H(s) =
q∏

i=1

1/(s/ωc − exp( jπ[1 + (2i − 1)/q]/2)) (12)

with

s ≈ 2
T

1 − z−1

1 + z−1
(13)

which is bilinear transformation, where ωc is cutoff fre-
quency, and z−1 is lag operator.

By using this Butterworth filter of q = 2, the µ̂(�T ) of
Eq.(11) can be changed to

µB(�T ) = ((2/T )2 +
√

2(2/T )ωc + ωc
2)−1

×
{
− 2(ωc

2 − (2/T )2)µ((� − 1)T )

−((2/T )2 − √2(2/T )ωc + ωc
2)µ((� − 2)T )

+ωc
2
(
µ̂(�T ) + 2µ̂((� − 1)T ) + µ̂((� − 2)T )

)}
(14)

where µ is defined in Eq.(16).
It may be better to avoid adding small increments after

the control u has approached to the optimal operating point.
We shall check whether a variation of the principal control
û:

δÛ� =
λ∑

i=0

|û((�M − i)∆) − û((�M − i − 1)∆)| (15)

is small, where λ is a small natural number. In our method,
by using Eqs.(14) and (15), the output of the accelerator at
t = �T is set as

µ(�T ) =

{
µB(�T ) if δÛ� ≥ ε
0 otherwise

(16)

where ε > 0 is a given small value.

4.4. Converter

The accelerator based on Eq.(16) is added to the Krstić
type scheme as shown in Fig.2, which has A/D and D/A.
The A/D is an analog to digital converter by a sampler
with the sampling period ∆. The D/A is a digital to analog
converter by the zero-th holder, in which µ(t) = µ(�T ) =
constant (�T ≤ t < (� + 1)T ) during the renewal cycle
period T .

5. Simulations

Consider the problem of optimizing the yield for a biore-
actor which is described by Monod model[5,6,9]:



ẋ1 = f1(x, α, u) = x1

(
x2

(α + x2)
− u

)

ẋ2 = f2(x, α, u) = u(1 − x2) − x1x2

(α + x2)
y = h(x, u) = x1 · u

where x = [x1, x2]T and 0 ≤ u ≤ 1. The unknown α is
initially set to α = 0.02, but it is changed to α = 0.1 at t =
600(sec). The optimal operating value and the maximum
output are u∗ = 0.860 and y∗ = 0.754 when α = 0.02, and
u∗ = 0.698 and y∗ = 0.537 when α = 0.1, though they are
unknown during the experiments. We set ∆ = 0.06(sec),
T = 3(sec), β = 0.03, ω = 0.08, ωh = 0.2, ωl = 0.02,
ωc = 0.5, k = 5, N = 2, q = 2, λ = 2, ε = 0.004. The
experiment starts at u(0) = 0.6.

Figure 3 shows a comparison between the Krstić ap-
proach(OLD) and our proposed approach(NEW) for the
time response of the extremum seeking control u. Figure
4 dose for the time response of the output y.

These results indicate that this new extremum seeking
control approach enables the system to regulate to the opti-
mal operating point swiftly.

6. Conclusions

This paper has proposed a modification of Krstić type
extremum seeking control, which speedily regulates to an
unknown extremum point for nonlinear systems. It is
equipped with an accelerator which consists of A/D, poly-
nomial identification, search of extremum point, Butter-
worth filter, and D/A.

Simulation results indicate that this extremum seeking
control approach enables the system of Monod model to
regulate to the optimal operating point more rapidly than
the Krstić original approach. This new approach shall be
studied at the Monod model in more detail, and be tested
by applying to another systems such as Haldane model, in
future works.
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Figure 1: Krstić type control scheme.
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Figure 2: Extremum seeking control scheme.
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Figure 3: Time responses of the control u.
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