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Abstract– The correlation dimension of two-phase flow 
is found to be of a relatively high dimension, typically 
greater than four. All the results for two-phase flows, 
however, were estimated using the method that was 
originally proposed in 1980's for a low dimensional 
chaotic system. We first introduce an optimal delay time 
reconstruction method and a point correlation dimension 
method into two-phase flow time series analysis. Using 
artificially generated quasiperiodic time series and real-
world two-phase flow time series, we show that applying 
two methods together largely improve the reliability of 
analysis. 
 
1. Introduction 

The studies of low-dimensional chaos provide new 
analysis methods: nonlinear time series analysis [1]. The 
methods turned out to be powerful tools in understanding 
irregular time series that generated by a low-dimensional 
nonlinear system. Then it began to apply nonlinear time 
series analysis to more complex time series from real 
world, such as human electroencephalogram (EEG) data, 
financial data, two-phase flow data, and so on. 

In the fluid engineering field, many studies have been 
devoted to achieve flow regime identification, scale-up 
design, validation of numerical simulation result, and flow 
control by nonlinear time series analysis [2-4]. However, 
the estimation of invariants is difficult and sometimes 
becomes subjective, and the reliability of estimated results 
have not been sufficiently shown. Therefore, there are 
some researchers who suspect the reliability of the 
analysis results. One of the reasons why the estimation 
becomes unreliable is in the used analysis methods. All 
the results for two-phase flows we know were estimated 
using the method that was originally proposed in 1980's 
for a low dimensional chaotic system. The theory of 
nonlinear time series analysis is still subject to research, 
and new techniques and methods have been proposed for 
a high dimensional system. Practical methods for noisy 
time series were also studying. Applying these methods, 
the analysis of two-phase flow time series will become 
more reliable.  

We show that applying an optimal delay time 
reconstruction method [5] and a point correlation 
dimension method [6] greatly improves the reliability of 
analysis [7]. In this paper, the methods and the results of 
artificially generated time series and various two-phase 
flow time series are shown. Then it is discussed that what 
state of two-phase flows can be analyzed. 

2. Analysis method and reliability of estimation 
 
2.1. Method for low dimensional system [1] 

Nonlinear time series analysis is based on the 
reconstruction of an orbit in phase space from time series. 
The most common reconstruction technique is the method 
of delays. State vectors z(k) in a m-dimensional phase 
space are formed from the time delayed values of scalar 
time series x(k): 

 
 , (1) 
 

where m and τ is called an embedding dimension and a 
delay respectively.  

Correlation dimension is a kind of fractal dimension 
that characterize the geometrical complexity of an orbit. 
The method proposed by Grassberger and Procaccia (GP 
method) is widely used. The first step is the calculation of 
correlation sum C(r). 

 
 , (2) 
 
 
 0)( =Θ x  for 0<x , 1)( =Θ x  for 1≥x ,
 

where N denotes the overall number of reconstructed 
vector z in Eq.(1), Npair is the actual number of pairs of 
points, Θ is the Heaviside step function, and w is the 
length of the Theiler window. For small distances r, C(r) 
is expected to scale with a power of r. The scaling 
exponent defines correlation dimension D2: 

 
 , for 0→r  and ∞→N . (3) 
 
Usually one cannot know whether the embedding 

dimension m is large enough, one must compute the C(r) 
for increasing m and calculates related D2(m). If D2(m) is 
saturated, this gives the correlation dimension D2. 
 
2.2. Optimal delay for orbit reconstruction 

In the almost all analysis of two-phase flow, the delay τ 
is determined by the relation between x(t) and x(t+τ) such 
as autocorrelation or mutual information. The problem is 
the optimization between x(t) and x(t+τ) does not mean 
the optimization of the other elements such as x(t+2τ), …, 
x(t+(m-1)τ). The more the embedding dimension m 
becomes large, the more the problem becomes serious. 
Many methods have been proposed for the estimation of 
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the optimal delay time τ (reviewed in [8]). We evaluate 
some of them by artificially generated quasiperiodic time 
series, and decide to use the average displacement method 
[5] that gives the most robust results. 

The average displacement method measures the average 
distance S(τ) of the reconstructed vector z(k) in Eq.(1) 
from the main diagonal of the m dimensional space.  

 
 
 (4) 
 
The main problem of this method is that there is no 

theoretical reason for the τ determining rule. Rosensteine 
et al. choose τ as suitable time delay, where the slope of 
S(τ) has dropped to 40% of the value at 0→τ . We 
examine the Rosensteine's criterion using quasiperiodic 
time series. The results show that it tends to give rather 
lower dimensions. We examined some criterions, and 
found that the better result is obtained at first minima of 
the slope of S(τ). 

Importance using proper delay time is shown in Fig.1. 
This figure shows the local slopes of logC(r) of 
quasiperiodic time series. The power law property in 
Eq.(3) appears a straight line parallel to the x-axis, the so-
called scaling region. The left panels are the plots using τ 
determined by the mutual information. The right panels 
are the plot using constant τ determined by the average 
displacement method and our proposed criterion. If the 
reconstructed orbit is low-dimensional, both methods 
work well (Fig.1a). However, if the orbit is high-
dimensional, the problem appears clearly (Fig.1b). In the 
case of using constant τ, the local slope becomes 
oscillational. The scaling regions are narrow and unclear, 
so that it is difficult to do reliable estimation. In the case 
of using optimal τ, the scaling regions are wide and clear, 
and also the saturation of the local slopes for increasing m 
can be seen. Using optimal time delay improves the 
reliability of the correlation dimension analysis of a high 
dimensional orbit. 
 
2.3. Point correlation dimension method 

Point correlation dimension is a locally defined fractal 
dimension at a specific point on an orbit. This method was 
proposed by Skinner et al. [6] for the analysis of 
physiological time series such as EEG. The procedure is 
same as the GP method except to calculate a local 
correlation sum Ci(r) at a reference point z(i).  

 
 , (5) 
 
 
  , for 0→r  and ∞→N . (6) 
 
The scaling exponent of Ci(r) gives the local point 

correlation dimension PD2(i) at each reference point, and 
in practice may vary over the entire orbit (see Fig.2d, right 
panel is the distribution of PD2(i) ). Averaging PD2(i) 

over all reference point yields the (averaged) point 
correlation dimension PD2, which gives the global 
description of the geometrical structure of an orbit. 

We have failed to analysis two-phase flow time series 
by the GP method many times, even if optimal time delay 
is used. However, many of those failed time series can be 
analyzed by the point correlation dimension method. In 
order to explain this, we investigate scaling regions using 
two-phase flow time series. Fig.2a, 2b is the local slopes 
of logC(r) and logCi(r) for a void fraction time series. In 
the local slope of logC(r), clear flat region is not appeared 
and slopes do not saturate with increasing m (Fig.2a). On 
the other hand, many of the logCi(r) show a clear and 
saturating scaling region. A good example is shown in 
Fig.2b. The positions of the scaling region of Ci(r) are 
shown in Fig.2c. The positions and lengths of the scaling 
regions are different where the reference points are 
located on an orbit. This is the reason of why PD2 well 
manage to real world time series. Because C(r) is the sum 
of Ci(r), the scaling region appears only in the overlapped 
part of each Ci(r)'s scaling region. If an orbit is high 
dimensional and its structure is complex, the variance of 
scaling regions becomes large and the overlap of scaling 
regions becomes narrow. 
 
2.4. Reliability of Estimation 

Fig.3 shows estimated dimensions for quasiperiodic 
time series (dimension D=1~5) versus number of data 
points N. Fig.3a is the estimation results using the 
common method for low dimensional chaos: constant time 
delays were determined by first minima of mutual 
information and the GP method was used. Fig.3b is the 
results using the proposed method: optimal delay 
reconstruction and point correlation method. For low 

 
 
 
 
 
 
 
 

(a)  2-quasiperiodic time series  ( 3,2=ω ) 
 
 
 
 
 
 
 
 
 
 

(b) 5-quasiperiodic time series ( 11,7,5,3,2=ω ) 

Fig.1 Local slopes of correlation sums by τ constant andτ
optimized reconstruction (N=300000) 
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dimensional time series (orbit dimension D=1, 2, and 3), 
both procedures give good results. However, for high 
dimensional time series (D>3), the common method gives 
the results with large error especially when the number of 
data point N is small. On the other hand, the proposed 
method gives the results with relatively small error. 
Estimated dimensions converge rapidly, so that one can 
obtain a proper dimension if N is small. Even if N is 
sufficiently large, correct dimensions could not be 
obtained. Steady errors remain. It is seems to be caused by 
the geometrical effect of a reconstructed orbit structure 
(the constant delay reconstructed orbit of quasiperiodic 
time series is not homogeneous at the scale of the scaling 
region). For example, if the reference point located at the 
edge of an orbit, scaling property is disturbed and 
underestimation is induced. If the neighbor orbits of the 
reference point are strongly distorted or folded, 
overestimation is induced. The GP method with optimal 
time delay reconstruction gives better results than the 
standard method, however, not better than the proposed 
method. 
 
3. Two Phase Flow Time Series Analysis 

Analysis results of air-water two-phase flow in a 
vertical pipe are shown. The reliability of the estimated 
results is tested by a surrogate data method. We choose the 
null hypothesis of the test that the original time series is 
generated from a linear stochastic process possibly 
undergoing a nonlinear static transform. We then 
randomly shuffled the original time series and create 
surrogate data sets that have same spectrum and 
distribution as the original time series (we use free 
nonlinear time series analysis package TISEAN [1]). 
 
3.1. Experimental system and measurements 

The schematic of the experimental system is shown in 
Fig.4 [4]. Gas provided by an air compressor is controlled 
by a regulator, and water flow is controlled by a pump. 
Air-water two-phase flow in a circular tube is measured 
by a wire-mesh sensor installed at the exchangeable 
vertical test section. The wire-mesh sensor measures 
cross-sectional void fraction [9]. A 42mm inner diameter 
and 2.1m length test section was used. Void fractions were 
recorded for 30 seconds at sampling rate of 1000Hz. 
(number of data point N=30000). In order to remove 
sensor noise, FIR low pass filter is applied to the time 
series (typical cut-off frequency is about 100Hz). 
 
3.2. Analysis Results 
3.2.1 Comparison of analysis results 

Analysis results for slug flow in various flow conditions 
and their surrogate test results (significance level α=0.05) 
are shown in Table.1. PD2o is a point correlation 
dimension using optimal delay reconstruction, and D2c is a 
correlation dimension using constant delay reconstruction. 
Almost all D2c fail the surrogate test, however, all PD2o 
pass the test. These results show that the newly introduced methods largely improve the reliability of real-world high 

dimensional time series analysis. 

 
 
 
 
 
 
 
 (a) Local slopes of logC(r) (b) Local slopes of logCi(r) 
 
 
 
 
 
 

(c) Position of scaling region of each Ci(r) 
 
 
 
 
 
 
 
 

(d) Estimated PD2(i) 
Fig.2 Local slopes of C(r) and Ci(r), and estimated PD2(i) 
 (Void fraction time series of slug flow, N=30000) 
 
 
  
 
 
 
 
 
 
 
 
 
(a) D2c: correlation dimension       (b) PD2o: Point correlation  
           by constant τ dimension by optimized τ 
Fig.3 Estimated dimensions for quasiperiodic time series dy (d 
=1～5) versus number of data points N 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4 Schematic of experimental system and bubble distribution
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3.2.2 Bubbly flow and slug flow 
Analysis results of bubbly and slug flow and their 

surrogate test results (α=0.05) are shown in Table.2. PD2o 
of slug flow pass the test, except for the one case. This 
indicates that the degree of freedom sufficiently lowered 
and the dynamics of slug flows is ruled by the motion of 
huge bubbles. On the other hand, all PD2o of bubbly flow 
fail the test. This indicates that the degree of freedom in 
bubbly flow does not sufficiently lowered because of the 
motions of small bubbles. 
3.2.3 Measurement position 

Slug flow time series measured at the different position 
of the test section were analyzed. The wire-mesh sensors 
are installed at 0.4m (upstream sensor) and 1.7m 
(downstream sensor) above the air/water mixer. PD2o and 
their surrogate test results (significance level α=0.1) are 
shown in Table.3. PD2o of the upstream time series are 
greater than PD2o of the downstream time series. Only 
half of PD2o of the upstream time series are pass the 
surrogate tests, while all PD2o of the downstream time 
series pass. These results imply that the order of flow has 
not yet generated at upstream sensor position and the 
degree of freedom of flow is not sufficiently lowered. In 
other words, if a reliable PD2o is estimated, it is evidence 
that deterministic order rules the flow. 

 
4. Conclusion 

We newly introduce two methods into the two-phase 
flow analysis in order to obtain a reliable estimation 
result: an optimal delay time reconstruction [5] and a 
point correlation dimension method [6].  

In practical nonlinear time series analysis, the quality of 
a reconstructed orbit has not been sufficiently paid 
attention. Because one always obtains only a finite 
number of noisy time series from real world, an improper 
delay time embedding yields unreliable estimation results. 
Therefore, optimal delay time selection for each 
embedding dimension is essential for the analysis. 

A point correlation dimension method is a practical 
analysis method. Disadvantage is point correlation 
dimension is estimated from only N interpoint distances 
(N is a time series length), while the GP method uses N2 
points. Therefore, its estimation becomes more difficult. 
In fact for hyperspheres whose dimension is greater than 7, 
our analysis results showed large errors. 

Judd has proposed the new model of correlation sum 
and maximum-likelihood estimator [10]. The Judd's 
method has the ability to estimate correct correlation 
dimension even if a number of time series is small or 
attractor is high-dimensional [8]. Applying the Judd's 
method to local correlation sums, it will be possible to 
obtain more correct point correlation dimensions. 

The proposed method applied to various two-phase flow 
time series. The comparison of estimated results and their 
surrogate test results demonstrates the high reliability of 
this newly applied analysis method. Many unsolved 
problems still remain: minimum data point number 
requirement, the stability of results (whether almost 

constant dimensions are obtained from a fixed flow 
condition), and so on. We plan to further investigation. 
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Table 1  Estimated dimensions of slug flow time series 
 
 
 
 
 
 
 
 
 
 
Table 2  Slug and bubbly flow    Table 3  Measurement position
 
 
 
 
 
 
 
 

Jl
(m/s)

Jg
(m/s) D2c test PD2o test Jl

(m/s)
Jg

(m/s) D2c test PD2o test

0.00 1.20 4.32 fail 4.37 pass 2.41 1.20 5.88 fail 5.71 pass
0.00 2.41 8.80 fail 5.50 pass 2.41 2.41 6.87 fail 5.87 pass
0.00 3.61 9.58 fail 4.87 pass 2.41 3.61 7.10 fail 6.23 pass
0.00 4.81 8.57 fail 4.93 pass 2.41 4.81 9.99 fail 5.92 pass
0.00 6.02 9.82 fail 5.60 pass 2.41 6.02 9.23 fail 5.76 pass
0.60 0.12 3.82 fail 3.67 pass 4.81 1.20 7.76 fail 6.02 pass
0.60 0.36 4.20 pass 4.09 pass 4.81 2.41 9.75 fail 6.30 pass
0.60 0.60 4.63 pass 4.37 pass 4.81 3.61 7.03 fail 6.46 pass
0.60 1.20 5.41 fail 5.02 pass 4.81 4.81 9.47 fail 6.61 pass

flow
type

Jl
(m/s)

Jg
(m/s) PD2o test

slug 0.00 0.05 2.59 pass
slug 0.00 0.30 3.61 pass
slug 0.60 0.05 2.22 pass
slug 0.60 0.30 3.85 fail

bubbly 0.00 0.05 7.12 fail
bubbly 0.00 0.30 6.34 fail
bubbly 0.60 0.05 7.58 fail
bubbly 0.60 0.30 7.03 fail

downstream upstream
Jg

(m/s)
Jl

(m/s) PD2o test PD2o test

0.4 1.2 3.1 pass 5.5 fail
0.7 1.2 3.7 pass 6.1 fail
1.1 1.2 3.7 pass 6.5 fail
1.5 1.2 4.1 pass 6.5 fail
1.8 1.2 4.5 pass 6.1 pass
2.2 1.2 5.1 pass 6.0 pass
2.6 1.2 4.9 pass 6.0 pass
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